Disk kaynak geometrisi için 30-670-keV gama ışını enerji aralığında CdZnTe dedektörünün dedeksiyon verimi

Bu çalışmada, dedektör hassasiyeti, temelde iki parametreye; enerji çözme gücü ve dedeksiyon verimine bağlı olduğundan, belirli bir enerji aralığında CdZnTe dedektörlerin spektroskopik özellikleri incelenmiştir. Bu amaçla, radyoaktif disk kaynaklar kullanılarak bir 5x5x5 mm3 CdZnTe dedektörle elde edilen gama spektrumlarının analizinden enerji çözme gücü (yarı yükseklikteki tam genişlik, YYTG cinsinden) ve pik biçimleri (pik-vadi oranı, P/V cinsinden) belirlenmiştir CdZnTe dedektörünün disk kaynak geometrisindeki dedeksiyon verimi, 30-670 keV enerji aralığında ölçülmüştür. Bu enerji aralığı, medikal görüntülemede kullanılan radyoizotopların, nükleer alandaki zenginleştirilmiş uranyum, plütonyum izotoplarının ve kullanılmış yakıt içindeki aktivasyon/fisyon ürünlerinin yayınladığı X- ve gama ışınlarının hemen hemen tümünü kapsar. Belirli bir mesafeye yerleştirilen disk kaynaklar ile CdZnTe dedektör için gama dedeksiyon veriminin enerjiye bağlılığını gösteren yarı-ampirik fonksiyon önerilmiştir. Ancak ölçülen verim değerlerinde, özellikle yüksek enerjilerde, 200-670 keV aralığında önemli derecede düşmeler gözlenmiştir. Bu durum, esas olarak kristal kusurlarına bağlı olan ve yükün etkin toplanamamasının bir sonucu olarak, fotopik alanlarında kayıpların olduğunu göstermektedir. Bunlar, geleneksel CdZnTe dedektörlerin bilinen yetersizlikleridir.

Detection efficiency of CdZnTe detector in the range of 30-670 keV gamma ray energy for a disc source geometry

The present study is concerned with the measurement of the spectroscopic properties of the CdZnTe detectors in a particular energy range since its sensitivity depends mainly on two parameters: energy resolution and detection efficiency. Thus, the energy resolution (in terms of FWHM) and the peak shape (in terms of peak-to-valley (P/V) ratio) were determined from the gamma-ray spectra measured with a 5x5x5 mm3 CdZnTe detector using radioactive disk sources. The detection efficiency of a CdZnTe detector for a disk source geometry was measured in the energy range of 30-670 keV covering almost most of the X-ray and gamma-ray emissions from the radioisotopes medically used in imaging, the enriched uranium and plutonium isotopes, and some activation/fission products in the spent fuel. A semi-empirical function was proposed to describe the energy dependence detection efficiency of CdZnTe detector for the disk source geometry at a given distance. However, the remarkable decreases in the measured efficiency curve for the detector are found especially in higher energies, above 200 keV up to 670 keV. This indicates that there are the losses in the peak areas associated with incomplete charge collection due to mainly crystal imperfections which can be attributed to the drawbacks existed in the conventional CdZnTe detectors.

___

  • 1. Scheiber, C., Giakos, G. C., “Medical applications of CdTe and CdZnTe detectors”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , Cilt 458, No 1, 12- 25, 2001.
  • 2. Eisen, Y., Shor, A., Mardor, I., “CdTe and CdZnTe gamma ray detectors for medical and industrial imaging systems”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Cilt 428, No 1, 158-170, 1999.
  • 3. Brunet, B. A., Von Scyoc, J. M., Schlesinger, T. E, James, R. B., “The spatial response of CdZnTe gamma-ray detectors as measured by gamma-ray mapping”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Cilt 458, No 1, 76-84, 2001.
  • 4. Spartiotis, A. K., Havulinna, J., Leppänen, A., Pantsar, T., Puhakka, K., Pyyhtiä, J., Schulman, T., “A CdTe real time X-ray imaging sensor and system”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Cilt 527, 478-486, 2004.
  • 5. Schulman, T., “Gama kameralar için geliştirilmiş yarıiletken CdTe ve CdZnTe piksel dedektörlerinin performans simülasyonu”, VIII. Nükleer Bilimler ve Teknolojileri Kongresi, Erciyes Üniversitesi, Kayseri, 77, 15-17 Ekim 2003. Tam metin Web adresi:_____http://kutuphane.taek.gov.tr/internet_tarama/ dosyalar/cd/4115/pdf/45.pdf>.
  • 6. Fougeres, P., Siffert, P., Hageali, M., Koebel, J.M., Regal, R., “CdTe ve Cd1-xZnxTe for nuclear detectors: facts and fictions”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Cilt 428, No 1, 38-44, 1999.
  • 7. Franc, J., Höschl, P., Belas, E., Grill, R., Hlídek, P., Moravec, P., Bok, J., “CdTe and CdZnTe crystals for room temperature gamma-ray detectors”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,Cilt 434, No 1, 146-151, 1999.
  • 8. Luke, P. N., Amman, M., Lee, J. S., Ludewigt, B. A., Yaver, H., “A CdZnTe coplanar-grid detector array for environmental remediation”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , Cilt 458, No 1, 319-324, 2001.
  • 9. Owens, A., Buslaps, T., Erd, C., Graafsma, H., Lumb, D., Welter, E., “ Hard X- and γ-ray measurements with a 3 x 3 x 2 mm3 CdZnTe detector”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Cilt 563, 268-273, 2006.
  • 10. eV Products Inc., a divison of II-VI Incorporated, Saxonburg, PA 16056, “The eV-Products Electronic Catalog and The Semiconductor Material Properties on the Web page _____http://www.evproducts.com/>”, 2007.
  • 11. Knoll, G. F., Radiation Detection and Measurement Third Edition, John Wiley & Sons, Inc., New York, 2000.
  • 12. Shikhaliev, P. M., “Tilted angle CZT detector for photon counting/energy weighting X-ray and CT imaging”, Physics in Medicine and Biology, Cilt 51, No 17, 4267-4287, 2006.
  • 13. Abbas, K., Morel, J., Etchevery, M., Nicolaou, G., “Use of miniature CdZnTe X/$lambda$ detector in nuclear safeguards: characterisation of spent nuclear fuel and uranium enrichment determination”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Cilt 405, No 1, 153-158, 1998.
  • 14. Berlizov, A. N., Gunnink, R., Zsigrai, J., Nguyen, C. T., Tryshyn, V.V.,“Performance testing of upgraded uranium ısotopes multi-group analysis code MGAU”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Cilt 575, No 3 ,498-506, 2007.
  • 15. Yücel, H., “The applicability of MGA method for depleted and natural uranium isotopic analysis in the presence of actinides ($^{232}Th$, $^{237}Np$, $^{233}Pa$ and $^{241}Am$)”, Applied Radiation and Isotopes, Cilt 65, No 11, 1269-1280, 2007.
  • 16. Carchon, R., Moeslinger, M., Bourva, L., Bass, C., Zendel, M., “Gamma radiation detectors for safeguards applications”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Cilt 579, No 1, 380-383, 2007.
  • 17. Arlt, R., Gryshchuk, V., Sumah, P., “Gamma spectrometric characterization of various CdTe and CdZnTe detectors”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Cilt 428, No 1, 127-137, 1999.
  • 18. Mortreau, P., Berndt, R., “Characterization of Cadmium Zinc Telluride detector spectra-application to the analysis of spent fuel spectra”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment , Cilt 458, No 1, 183- 188, 2001.
  • 19. Czock, K. H., Arlt, R., “Use of miniature CdZnTe to analyze gamma emission of safeguards samples in the field”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Cilt 458, No 1, 175-182, 2001.
  • 20. Hofsetter, K. J., Beals, D. M., “Comparison of CdTe and CdZnTe detectors for field determination of uranium isotopic enrichments”, Journal of Radioanalytical Nuclear Chemistry, Cilt 263, No 1, 171-176, 2005.
  • 21. Debertin, K., Helmer, R.G., γ- and X-ray Spectrometry with Semiconductor Detectors, Elsevier, New York, 1988.
  • 22. Gilmore, G., Hemingway, J.D., Practical Gamma-Ray Spectrometry, John Wiley& Sons, 2000.
  • 23. Keyser, R.M., “Characterization of room temperature detectors using the proposed IEEE Standard (draft standard), 2001, IEEE NPSS, available: RonKeyser@IEE.org, ORTEC, 801 South Illinous Avenue, Oak Ridge, TN 37830, ABD.
  • 24. Berger, M. J., Hubbell, J. H., Seltzer, S. M., Chang, J., Coursey, J. S., Sukumar, R., Zucker, D. S., XCOM Database Web page: _____http://physics.nist.gov/PhysRefData/Xcom/Text/ XCOM.html>, National Institute of Standards and Technology (NIST), 2007.
  • 25. Tsoulfanidis, N., Measurement and Detection of Radiation, Hemisphere Publishing Corporation, 1983.
  • 26. Gunnink, R., Arlt, R., “Methods for evaluating and analyzing CdZnTe spectra”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Cilt 458, 196-205, 2001.
  • 27. Pérez, J. M., He, Z., Wehe, D. K., Du, Y. F., “Estimate of large CZT detector absolute efficiency”, IEEE Transactions on Nuclear Science, Cilt 49, 2010-2018, 2002.
  • 28. González, R., Pérez, J.M.,He, Z., “ Efficiency at different interaction depth in large coplanar CdZnTe detectors”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Cilt 531, No 3, 544-559, 2004.
  • 29. Brutscher, J., Arlt, R., Czock, K. H., “Isotope identification software for gamma spectra taken with CdZnTe detectors”, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Cilt 458, No 1, 189-195, 2001.