Hareketli ısı kaynağı ile bir yüzeyinden ısıtılan plakada sıcaklık ve termal gerilme dağılımları

Bu çalışmada, durgun çevre şartları altında hareketli ısı kaynağı ile bir yüzeyinden ısıtılan plakadaki sıcaklık ve termal gerilme dağılımlarının sayısal analizi yapılmaktadır. Hareketli ısı akısı profili olarak Gauss dağılımı seçilmiştir. Isı kaynağı z ekseni etrafında sabit açısal bir hızla ($Omega$) dönerken, plaka da eksenel yönde ilerleme hareketi yapmaktadır. Sayısal çözümler, çeliğin farklı ısı iletim katsayıları ($lambda$ = 10’dan 50 W/m-K’ne kadar) ve ısı kaynağının farklı $Omega$’ları (5 ve 10 rpm) için gerçekleştirilmektedir. Isı kaynağı, plakanın çok küçük bir bölgesine etki etmesinden dolayı uniform olmayan dik sıcaklık gradyantları oluşturmaktadır.

Temperature and thermal stress distribution in a plate heated from one side surface with a moving heat source

In this study, temperature and thermal stress distributions in a steel plate heated from its one side surface under stagnant ambient conditions by a moving heat source are analyzed numerically. Gauss distribution was chosen as a moving heat source profile. While the heat source rotates with a constant angular speed ($Omega$) around the z axis, the plate moves forward the axial direction. The numerical solutions have been performed for the different thermal conductivity of steel ($lambda$ =10 to 50 W/m-K) and for the different $Omega$s of heat source (5 and 10 rpm). Heat source produces the non-uniform steep temperature gradients source due to the fact that the heat flux is subjected on a very small section of the plate.

___

  • 1. Li J., Li J.C.M., “Temperature distribution in workpiece during scratching and grinding”, Materials Science and Engineering, A 409: 108–119, 2005.
  • 2. Alilat N, Bairi A, Laraqi N., “Three-dimensional calculation of temperature in a rotating disk subjected to an eccentric circular heat source and surface cooling”, Numerical Heat Transfer, Part A 46: 167–180, 2004.
  • 3. Hou Z.B., Komanduri R., “General solutions for stationary/moving plane heat source problems in manufacturing and tribology”, International Journal Of Heat And Mass Transfer, 43 1679- 1698, 2000.
  • 4. Shuja SZ, Yılbaş BS., “3-Dimensional conjugate laser heating of a moving slab”, Applied Surface Science, 167:134–148, 2000.
  • 5. Cheng PJ, Lin SC., “An analytical model for the temperature field in the laser forming of sheet metal”, Journal of Materials Processing Technology, 101:260-267, 2000.
  • 6. Araya G, Gutierrez G. Analytical solution for a transient, three-dimensional temperature distribution due to a moving laser beam. International Journal of Heat and Mass Transfer 2006; 49:4124–4131.
  • 7. Koç A., “3-D analysis of temperature distribution in the material during pulsed laser and material interaction”, Heat and Mass Transfer, 40:697- 706, 2004.
  • 8. Moulik PN, Yang HTY, Chandrasekar S., “Simulation of thermal stresses due to grinding”, International Journal of Mechanical Sciences, 43:831-851, 2001.
  • 9. Eslam MR., Babaei MH. and Poultangari R., “Thermal and mechanical stresses in a functionally graded thick sphere”, International Journal of Pressure Vessels and Piping, 82: 522-527, 2005.
  • 10. Laraqi N., Bairi A., Segui L., “Temperature and thermal resistance in frictional devices”, Applied Thermal Engineering, 24: 2567–2581, 2004.
  • 11. Liu M-S., Dong Q-W., Wang D-B., Ling X., “Numerical simulation of thermal stress in tube- sheet of heat transfer equipment”, International Journal of Pressure Vessels and Piping, 76: 671–5, 1999.
  • 12. Alzaharnah T, Yilbas BS, Hashmi MS., “Conjugate heat transfer in fully developed laminar pipe flow and thermally induced stresses”, Computer Methods in Applied Mechanics and Engineering, 190: 1091–104, 2000.
  • 13. Alzaharnah T, Yilbas BS, Hashmi MS, “Pulsating flow in circular pipes––The analysis of thermal stresses”, International Journal of Pressure Vessels and Piping, 78: 567–79, 2001.
  • 14. Alzaharnah T, Hashmi MS, Yilbas BS., “Thermal stresses in thick-walled pipes subjected to fully developed laminar flow”, Journal of Materials Processing Technology, 118: 50–7, 2001.
  • 15. Yapıcı H, Albayrak B., “Numerical solutions of conjugate heat transfer and thermal stresses in a circular pipe externally heated with non-uniform heat flux”, Energy Conversion and Management, 45: 927–37, 2004.
  • 16. Yapıcı H., Baştürk G., Albayrak B., “Numerical study on conjugate heat transfer in laminar fully- developed flow with temperature-dependent thermal properties through an externally heated SiC/SiC composite pipe and thermally induced stress”, Energy Conversion and Management, 46: 633-654, 2005.
  • 17. Yapıcı H, Yalçın Ş., “Transient temperature and thermally induced stress distributions in a partly- circumferentially heated cylindrical workpiece”, Heat Mass Transfer, 41: 104-111, 2004.
  • 18. Yapıcı, H., Baştürk G., “Numerical solutions of transient conjugate heat transfer and thermally induced stress distribution in a heated and rotating hollow disk”, Energy Conversion and Management, 46: 61-84, 2005.
  • 19. Yapıcı H., Baştürk G., “Numerical solutions of transient temperature and thermally induced stress distributions in a solid disk heated with radially periodic expanding and contracting ring heat flux”, Journal of Materials Processing Technology, 159: 99–112, 2005.
  • 20. Yapıcı, H., Baştürk, G., “Reduction of thermally induced stress in a solid disk heated with radially periodic expanding and contracting ring heat flux”, Journal of Materials Processing Technology, 180/1-3: 279-290, 2006.
  • 21. Fauple JH, Fisher FE., ”Engineering design––A Synthesis of stress analysis and materials engineering” New York:Wiley, 1981.
  • 22. Fluent Incorporated, FLUENT User's guide version 6.1, 2003.