CAM FİBER VE PARÇACIK TAKVİYELİ FENOL VE ÜRE FORMALDEHİT'İN ALEV DİRENCİ VE FİZİKSEL ÖZELLİKLERİNİN GELİŞTİRİLMESİ

Gerçekleştirilen çalışmalarda sentezlenen fenol formaldehit ve ticari üre formaldehit reçineleri kırpılmış cam elyaf ve keçiboynuzu (Ceratoniasiliqua) çekirdeği parçacıkları ile farklı oranlarda desteklenerek MDF (Medium density fiberboard) üretilmiştir. Farklı takviye hacim oranları kullanılarak hazırlanan kompoze malzemenin bir kısmına alev geciktirici özelliğinden dolayı ZnB2O3.3,5H2O eklenmiştir. Yapılan mekanik ve yanma testleri ile hazırlanan kompoze malzemenin özellikleri araştırılmıştır. Kompoze malzemenin dış ortamlardaki kullanım imkânının anlaşılabilmesi maksadı ile şişme kalınlığı, su emme miktarı testleri uygulanmıştır. Bulgular elyaf takviyesi ile malzeme mukavemetinin 14.438 kPa, parçacık takviyesinin ise sertlik değerinin 142 VH değerine yükseldiğini göstermiştir. Cam elyaf ile üretilen kompozelerin LOİ değeri %5 oranında ZnB2O3.3,5H2O kullanımı ile %39 den %52 oksijen konsantrasyonuna yükselmiştir.

IMPROVEMENT OF THE FIRE RESISTANCE AND PHYSICAL PROPERTIES OF GLASS FIBER AND PARTICLE REINFORCED PHENOL AND UREA FORMALDEHYDE

Synthesized phenol formaldehyde and commercial urea formaldehyde were mixed with glass fiber and Ceratoniasiliqua seed particles to produce MDF (Medium density fiberboard). Various reinforcement and matrix ratios were applied and ZnB2O3.3,5H2O was used as additives due to its fire retardant property. By means of mechanical and burning tests produced composites were investigated. Outdoor usage possibility of the composites was checked by swelling thickness and water absorption experiments. Results indicate that glass fiber increase composite strength up to 14,438 kPa, whereas particle reinforcement enhances hardness to 142 VH. Addition of 5% of ZnB2O3.3.5H2O increase LOI value from 39% to %52 oxygen concentration.

___

  • 1. Gürü, M., Aruntaş, Y., Tüzün, F.N., ve Bilici, İ., “Processing of urea-formaldehyde-based particle board from hazel nut Shell and improvement of its fire and water resistance”, Fire and materials, 33, 413-419, 2009.
  • 2. Gürü, M., Atar, M., ve Yıldırım, R., “Production of polymer matrix composite particleboard from walnut shell and improvement of its requirements”, Material and Design, 29, 284- 287, 2008.
  • 3. Gürü, M., Şahin, M., Tekeli, S., ve Tokgöz, H., “Production of Polymer Matrix Composite Particleboard from Pistachio Shells and Improvement of Its Fire Resistance by Fly Ash”, High Temperature Materials and Processes, 28, 3, 191-195, 2009.
  • 4. Chang, C.P., ve Hung, S.C., “Manufacture of flame retardant foaming board from waste papers reinforced with phenol–formaldehyde resin”, Bioresource Technology, 83, 201-202, 2003.
  • 5. Gürü, M., Tekeli, S., Çakanyıldırım, Ç., ve Cabbar C., “Processing of Cer-Met Composite Material from Zn and B2O3”, High Temperature Materials and Processes, 27, 4, 243-248, 2008.
  • 6. Kozlowski, R., Helwig, M., ve Przepiera, A., “Light-weight, environmentally friendly, fire retardant composite boards for panelling and construction”, Inorganic Bonded Wood and Fiber Composite Materials, U.S.A., 6-11, 1995.
  • 7. Murathan, A., Murathan, A.S., Gürü, M. ve Balbaşı, M., “Manufacturing low density boards from waste cardboards containing aluminium, Material and Design, 28, 7, 2215-2217, 2007.
  • 8. Tabarsa, T., Jahanshahi, S., ve Ashori, A., “Mechanical and physical properties of wheat straw boards bonded with a tannin modified phenol–formaldehyde adhesive”, Composites: Part B, 42, 176-180, 2011.
  • 9. Halvarsson, S., Edlund, H., ve Norgren M., “Properties of medium-densityfibreboard (MDF) based on wheat straw and melamine modified urea formaldehyde (UMF) resin”, Industrial Crops and Products, 28, 1, 37-46, 2008.
  • 10. Boran, S., Usta, M., ve Gümüşkaya, E., “Decreasing formaldehyde emission from medium density fiber board panel sproduced by adding different amine compounds to urea formaldehyde resin”, International Journal of Adhesion and Adhesives, 31, 7, 674-678, 2011.
  • 11. Zheng, Y., Pan, Z., Zhang, R., Jenkins, B.M., ve Blunk, S., “Properties of medium-density particle board from saline Athelwood”, Industrial Crops and Products, 23, 3, 318-326, 2006.
  • 12. Yang, T.H., Lin, C.J., Wang, S.Y., ve Tsai, M.J., “Characteristics of particle board made from recycled wood-waste chips impregnated with phenol formaldehyde resin”, Building and Environment, 42, 189-195, 2007.
  • 13. Halligan, A.F., “A review of thickness swelling in particle board”, Wood Science and Technology, 4, 4, 301-312, 1970.
  • 14. Biswas, D., Bose, S.K., ve Hossain, M.M., “Physical and mechanical properties of urea formaldehyde bonded particle board made from bamboo waste”, International Journal of Adhesion&Adhesives, 31, 84-87, 2011.
  • 15. Gürü, M., Ayar, B., Çakanyıldırım, Ç., ve Bilen, M., “Synthesis and Characterization of Zinc Borate Pigment Resistant to Corrosion and Stable at High Temperatures”, 17th International Congress of Chemical and Process Engineering, , Prague-Czech Republic, 27-31 August 2006.
  • 16. Qu, R., Ji, C., Sun, Y., Li, Z., Cheng, G., ve Song, R., “Syntheses and adsorption properties of phenol formaldehyde type chelating resins bearing the functional group of tartaric acid”, Chinese J. Of Polymer Science, 22, 5, 469-475, 2004.
  • 17. Kim, J.W., Carlborn, K., Matuana, L., ve Heiden, P.A., “Thermoplastic modification of ureaformaldehyde wood adhesives to improve moisture resistance”, Journal of Applied Polymer Sciences, 101, 4222-4229, 2006