Anadolu'da Roma dönemi yapı tuğlalarının özellikleri

Bu çalışmada, Bergama'da bulunan Kızıl Avlu (Serapeum) ile Aigai ve Nysa antik kentlerinde bulunanfarklı yapılardan alınan Roma dönemi yapı tuğlalarının kimyasal ve mineralojik kompozisyonları, fiziksel,mikroyapısal ve puzolanik özellikleri XRF, XRD, FTIR, SEM-EDS ve kimyasal analizler ile belirlenmiştir.Tuğlaların kimyasal kompozisyonlarını oluşturan temel oksitler ve eser elementler istatistik yöntemlerkullanılarak tuğlaların üretiminde kullanılan hammadde kaynaklarının aynı olup olmadığını belirlemeyeyönelik olarak değerlendirilmiştir. Elde edilen sonuçlar, Roma dönemi yapı tuğlalarının kalsiyumca zenginkil kaynakları kullanılarak ve düşük sıcaklıklarda (

Characteristics of Roman period building bricks in Anatolia

In this study, chemical and mineralogical compositions, physical, microstructural and pozzolanic propertiesof Roman Period building bricks taken from Kızıl Avlu (Serapeum) in Pergamon and from several different buildings from ancient sites of Aigai and Nysa were determined by using XRF, XRD, FTIR, SEM-EDS and chemical analyses. Chemical compositions of bricks were evaluted by statistical analyses inorder to identify whether or not these bricks were manufactured by using same natural raw materialsources. Analyses results indicated that Roman period building bricks were manufactured by using calciumrich clay sources and fired at low temperatures (

___

  • 1. Ward-Perkins J.B., Roman Imperial Architecture, Yale University Press, New Haven&London, 1981.
  • 2. Adam J.P., Roman Building Materials and Techniques (First published in 1937), Çeviri: Anthony Mathews, Routledge, Londra&New York, İngiltere&A.B.D., 2005.
  • 3. Schalenghe R., Barello F., Saiano F., Ferrara E., Fontaine C., Caner L., Olivetti E., Boni I., Petit S., Material sources of the Roman brick-making industry in the I and II Century A.D. from Regio IX, Regio XI and Alpes Cottiae, Quat. Int., 357, 189-206, 2015.
  • 4. MacDonald W.L., The Architecture of the Roman Empire, Yale University Press, New Haven&London, 1965.
  • 5. Finlay A.J., McComish J.M., Ottley C.J., Bates C.R., Selby D., Trace element fingerprinting of ceramic building material from Corpow and York Roman fortresses manufactured by the VI Legion, J. Archaeolog. Sci., 39, 2385-2391, 2012.
  • 6. RILEM, Tests defining the structure, Mater. Constr., 13 (75), 177-181, 1980.
  • 7. Luxán M.P., Madruga F., Saavedra J., Rapid evaluation of pozzolanic activity of natural products of conductivity measurement, Cem. Concr. Res., 19, 63- 68, 1989.
  • 8. Stefanidou M., Papayianni I., Pachta V., Analysis and characterization of Roman and Byzantine fired bricks from Greece, Mater. Struct., 48, 2251-2260, 2015.
  • 9. ASTM International, ASTM C67-07 Standard Test Methods for Sampling and Testing Brick and Structural Clay Tile, West Conshohocken, PA, 2007.
  • 10. Cultrone G., Sebastián E., Elert K., De La Torre M.J., Cazalla O., Rodriguez-Navarro C., Influence of mineralogy and firing temperature on the porosity of bricks, J. Am. Ceram. Soc., 24, 547-564, 2004.
  • 11. Elert K., Cultrone G., Rodriguez-Navarro C., Pardo E.S., Durability of bricks used in the conservation of historic buildings - influence of composition and microstructure, J. Cult. Heritage, 4, 91-99, 2003.
  • 12. Carratero M.I., Dondi M., Fabbri B., Raimondo M., The influence of shaping and firing technology on ceramic properties of calcareous and non-calcareous illitic-chloritic clays, Appl. Clay Sci., 20, 301-306, 2002.
  • 13. He C., Osbaeck B., Makavicky E., Pozzolanic reactions of six principal clay minerals: activation, reactivity assessments and technological effects, Cem. Concr. Res., 25/8, 1691-1702, 1995.
  • 14. Hopa D.Y., Özel E., Effect of Kaolin type on pyroplastic deformation of sanitaryware porcelain body, Journal of the Faculty of Engineering and Architecture of Gazi University, 31 (2), 313-322, 2016.
  • 15. Rodrigues S.F.S., da Costa M.L., Pöllmann H., Kern D.C., da Silveira M.I., Kipnis R., Pre-historic production of ceramics in the Amazon: Provenience, raw materials, and firing temperatures, Appl. Clay Sci., 107, 145-155, 2015.
  • 16. Cardiano P., Ioppolo S., De Stefano C., Pettignano A., Sergi S., Piraino P., Study and characterization of the ancient bricks of monastery of San Filippo di Fragalá in Frazzanò (Sicily), Anal. Chim. Acta, 519, 103-111, 2004.
  • 17. Sujeong L., Kim Y.J., Moon H.S., Phase transformation sequence from kaolinite to mullite investigated by an energy-filtering transmission electron, J. Am. Ceram. Soc., 10, 2841-2848, 1999.
  • 18. Nirmala G., Viruthagiri G., FT-IR characterization of articulated ceramic bricks with wastes from ceramic industries, Spectrochim. Acta, Part A, 126, 129-134, 2016.
  • 19. Tite M.S., Maniatis Y., Examination of ancient pottery using the scanning electron microscope, Nature, 257, 122-123, 1975.
  • 20. Mommsen H., Provenance determination of pottery by trace element analysis: problems, solutions and applications, J. Radioanal. Nucl. Chem., 247 (3), 657- 662, 2001.