Al-Si alaşımlarında silisyum miktarının döküm parça-kalıp aryüzey ısı transfer katsayısı üzerine etkisi

Bu çalışmanın amacı katılaşma süresince su soğutmalı bakır soğutucu üzerinde tek yönlü dikey olarak katılaşan Al-Si alaşımlarında silisyum içeriğinin arayüzey ısı transferi katsayısına etkisini incelemektir. Arayüzey ısı transfer katsayısı silisyum içeriğine bağlı olarak, Sonlu Farklar Metoduna dayalı FORTRAN programı ile belirlenmiştir. Sonuç olarak; arayüzey ısı transfer katsayısı silisyum içeriğinin azalması ile artmıştır, maksimum arayüzey ısı transfer katsayısı değerleri; %7Si’de 8900 W/m2K, %5Si’de 14600 W/m2K ve %3Si’de 19100 W/m2K olarak elde edilmiştir.

Effect of silicon content in Al-Si alloys on heat transfer coefficient at casting-mold interface

The objective of the present work was to investigate the effect of silicon content on the interfacial heat transfer coefficient (IHTC) for vertically upward unidirectional solidification of Al-Si casting on water cooled cupper chills during solidification. The interfacial heat transfer coefficient measured as a function of different silicon content was determined by using finite difference method solving FORTRAN language. The obtained results; the heat transfer coefficients increases as silicon content decreases, the maximum heat transfer coefficient values were obtained; 8900 W/m2K with %7, 14600 W/m2K with %5 and 19100 W/m2K with %3 silicon content.

___

  • 1. Şahin, H.M., Kocatepe, K., Kayıkcı R. ve Akar, N., “Determination of Unidirectional Heat Transfer Coefficient during Unsteady State Solidification at Metal Chill Interface”, Energy Conversion and Management, 47, 19–34, 2006.
  • 2. Şahin, H.M., Kocatepe, K., Kayıkcı R. ve Akar, N., “Ötektik Al-Si Alaşımında Soğutucu Yüzey Pürüzlülüğünün Arayüzey Isı Transfer Katsayısına Etkisi”, Gazi Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, Cilt 21, No 3, 473-481, 2006.
  • 3. Kim, T.G. ve Lee, Z.H., “Time-varying Heat Transfer Coefficients Between Tube-Shaped Casting and Metal Mold”, International Journal of Heat and Mass Transfer, 40, 3513-3525, 1997.
  • 4. Lee, Z.H., Kim, T.G. ve Choi, Y.S., “The Movement of the Concave Casting Surface during Mushy-Type Solidification and Its Effect on the Heat-Transfer Coefficient”, Metallurgical and Materials Transactions B, 29, 1051-1056, 1998.
  • 5. Fortin, G, Louchez, P. ve Samuel, F H, “Factors Controlling Heat Transfer Coefficients at the Metal-Mold Interface during Solidification of Aluminum Alloys: An Analytical Study”, AFS Transactions, 100, 863-871, 1992.
  • 6. Hao, S.W., Zhang, Z.Q., Chen, J.Y., ve Liu, P.C., “Heat Transfer at the Metal-Mold Interface in Ductile Iron”, AFS Transactions, 95, 601-608, 1987.
  • 7. Sharma, D.G.R. ve Krishnan, M., “Simulation of Heat Transfer at Casting Metal-Mold Interface“, AFS Transactions, 99, 429-438, 1991.
  • 8. Taha, M.A., El-Mahallawy, N.A., El-Mestekawi, M.T. ve Hassan A.A., “Estimation of Air Gap and Heat Transfer Coefficient at Different Faces of Al And Al-Si Castings Solidifying in Permanent Mould”, Materials Science And Technology, 17, 1093-1101, 2001.
  • 9. Santos, C.A., Quaresma, J.M.V. ve Garcia, A., “Determination of Transient Interfacial Heat Transfer Coefficients in Chill Mold Casting”, Journal of Alloys and Compounds, 319, 174- 186, 2001.
  • 10. Santos, C.A., Siqueira, C.A., Garcia, A., Quaresma, J.V.M. ve Spim, J.A., “Metal/Mold Heat Transfer Coefficients during Horizontal and Vertical Unsteady-State Solidification of Al-Cu and Sn-Pb Alloys”, 4th International Conference on Inverse Problems in Engineering, Rio de Janeiro, Brazil, 2002.
  • 11. Siqueira, C.A., Cheung, N. ve Garcia, A., “The Columnar To Equiaxed Transition During Solidification of Sn–Pb Alloys”, Journal of Alloys and Compounds, 351, 126–134, 2003.
  • 12. Peres, M.D., Siqueira, C.A. ve Garcia, A., “Macrostructural and Microstructural Development in Al–Si Alloys Directionally Solidified under Unsteady-State Conditions”, Journal of Alloys and Compounds, 381,168–181, 2004.
  • 13. Santos, C.A., Siqueira, C.A.,Garcia, A., Quaresma, J.M.V. ve Spim, J.A., “Metal–Mold Heat Transfer Coefficients during Horizontal and Vertical Unsteady-State Solidification of Al–Cu and Sn–Pb Alloys”, Inverse Problems in Science and Engineering, 12, 279–296,2004.
  • 14. Sá, F., Rocha, O.L., Siqueira, C.A. ve Garcia, A., “The Effect of Solidification Variables on Tertiary Dendrite Arm Spacing in Unsteady-State Directional Solidification of Sn–Pb and Al–Cu Alloys”, Materials Science and Engineering A, 373, 131–138 ,2004.
  • 15. Spinelli, J.E., Rosa, D.M., Ferreira, I.L. ve Garcia, A., “Influence of Melt Convection on Dendritic Spacing of Downward Unsteady-State Directionally Solidified Al–Cu Alloys”, Materials Science and Engineering A, 383,271–282, 2004.
  • 16. Souza, E. N., Cheung, N. ve Garcia, A., “The Correlation Between Thermal Variables and Secondary Dendrite Arm Spacing During Solidification of Horizontal Cylinders of Sn–Pb Alloys” Journal of Alloys and Compounds, 399, 110-117, 2005.
  • 17. Muojekwu, C.A., Samarasekera, I.V. ve Brimacombe, J.K., “Heat Transfer and Microstructure during The Early Stages of Metal Solidification”, Metallurgical and Materials Transactions B, 26, 361-382, 1995.
  • 18. Michel, F., Louchez, P. R. ve Samuel, F. H., “Heat Transfer Coefficient during Solidification of Al-Si Alloys: Effects of Mold Temperature, Coating Type and Thickness”, AFS Transactions, 103, 275-283, 1995.
  • 19. Krishnan, M. ve Sharma, D.G.R., “Determination of Heat Transfer Coefficient between Casting and Chill in Unidirectional Heat Flow”, AFS Transactions, 102, 769-774, 1994.
  • 20. Krishnan, M. ve Sharma, D.G.R., “The Effect of Alloy Properties on the Heat Flow across the Casting-Mold Interface”, Scripta Metallurgica et Materialia, 28, 447-451, 1993.
  • 21. Narayan Prabhu, K. ve Ravishankar, B.N., “Effect of Modification Melt Treatment on Casting/Chill Interfacial Heat Transfer and Electrical Conductivity of Al-/13% Si Alloy”, Materials Science and Engineering A, 360, 293-298, 2003.
  • 22. Suly, L.J.D., “The Thermal Interface between Casting and Chill Moulds”, AFS Transactions, 84, 735-744, 1976.
  • 23. Prabhu, K.N. ve Griffiths, W.D., “Assessment of Metal/Mould Interfacial Heat Transfer during Solidification of Cast Iron” Third International Conference on Solidification and Gravity, Miskolc, Hungary, 455-461, 1999.
  • 24. Lau, F., Lee, W.B., Xiong, S.M. ve Liu, B.C., “A Study of The Interfacial Heat Transfer between an Iron Casting and a Metallic Mould”, Journal of Materials Processing Technology, 79, 25–29, 1998.
  • 25. Broucaret, S., Michrafy, A. ve Dour, G., “Heat Transfer and Thermo-Mechanical Stresses in a Gravity Casting Die Influence of Process Parameters”, Journal of Materials Processing Thecnology, 110, 211-217, 2001.
  • 26. Hallam, C.P. ve Griffiths, W.D.,”A Model of the Interfacial Heat-Transfer Coefficient for the Aluminum Gravity Die-Casting Process”, Metallurgical and Materials Transactions B; 35, 721-733, 2004.
  • 27. Gozlan, E. ve Bamberger, M., “Heat Flow and Solidification in A Metal Mould” Zeitschrift für Metallkunde, 78, 677-682, 1987.
  • 28. Srinivasan, M.N., “Heat Transfer Coefficients at the Casting-mould Interface during Solidification of Flake Graphite Cast Iron in Metallic Moulds”, Indian Journal of Technology, 20, 123-129, 1982.
  • 29. Hallam, C.P., Griffiths, W.D. ve Butler, N.D., “Interfacial Heat Transfer between A Solidifying Aluminum Alloy and A Coated Die Steel”, Materials Science Forums, 329-330, 467-472, 2000.
  • 30. Ho, K. ve Pehlke, R D ; “Mechanisms of Heat Transfer at A Metal-Mold Interface”; AFS Transactions, 92, 587-598, 1984.
  • 31. Hou, T.X. ve Pehlke, R.D., “Determination of Mold-Metal Interfacial Heat Transfer and Simulation of Solidification of An Al-%13 Si Casting”, AFS Transactions, 96, 129-136, 1998.
  • 32. Ho, K. ve Pehlke, R.D., “Transient Methods for Determination of Metal-Mold Interfacial Heat Transfer”, AFS Transactions, 91, 689-698, 1983.
  • 33. Nishida, Y., Droste, W. ve Engler, S., “The Airgap Formation Process at the Casting-Mold interface and the Heat Transfer Mechanism Through the Air-gap”, Met. Transactions B, 17, 833-844, 1986.
  • 34. Liu, W., Wang G X., ve Matthys, E.F., “Thermal Analysis and Measurements for A Molten Metal Drop Impacting on A Substrate, Cooling, Solidification and Heat Transfer Coefficient”, International Journal of Heat and Mass Transfer, 38, 1387-1395 ,1995.
  • 35. Trovant, M. ve Argyropoulos, S.A., “The Implementation of A Mathematical Model To Characterize Mold Metal Interface Effects in Metal Casting”, Canadian Metallurgical Quarterly, 37, 185-196, 1998.
  • 36. Parker, J.K. ve Piwonka, T.S., “Gap Formation in Resin-Bonded Molds”, AFS Transactions, 108, 239-245, 2000.
  • 37. Hwang, J.C., Chuang, H.T., Jong, S.H. ve Hwang, W.S., “Measurement of Heat Transfer Coefficient at Metal-Mold Interface during Casting”, AFS Transactions, 102, 877-883, 1994.
  • 38. Coates, B.L., Heat Transfer of the Casting Metal/Mold Interface during Solidification, PhD Thesis, Graduate Department of Materials Science and Engineering, University of Toronto, Toronto, Canada, 129-192, 2004.
  • 39. Hartley, J.G. ve Patterson, J.A.L., “The Influence of Temperature, Moisture Content and Binder Content on the Conductivity of Dried Bentonite- Bonded Zirkon and Silica Sands”, AFS Transactions, 91, 183-190, 1983.
  • 40. Kannaiah, P., Narayana, K.L. ve Roshan, H. Md., “Thermal Properties of Molding Sands, Casting- Over Probe Embedded Specimen Method”, AFS Transactions, 95, 591-600, 1987.
  • 41. Hartley, J.G., Babcock, D. ve Berry, J.T., “The Thermal Conductivity of Bentonite-Bonded Molding Sands”, AFS Transactions, 89, 469-476, 1981.
  • 42. Bandyopadhyay, B.P., Joshi, M.D. ve Chakraborty, P.N., “A Transient Method of Simultaneous Measurement of Thermal Properties of Moulding Sand Using Plane Heat Source”, British Foundryman, 77, 318-321, 1984.
  • 43. Seshadri, M.R. ve Ramachandran, A., “Mold Materials Thermal Properties”, AFS Transactions, 69, 616-624, 1961.
  • 44. Krishnan, M. ve Sharma, D.G.R., “Determination of the Interfacial Heat Transfer Coefficient h in Unidirectional Heat Flow by Beck’s Non Linear Estimation Procedure”, Int. Comm. Heat Mass Transfer, 23, 203-214, 1996.
  • 45. Özışık, M.N., Finite Difference Methods in Heat Transfer, Mechanical and Aerospace Engineering Department, North Carolina State University, ABD, 1994.
  • 46. Incropera, F.P. ve Dewitt, D.P., Fundamentals of Heat and Mass Transfer, John Wiley & Sons, Purdue University, School of Mechanical Engineering, ABD, 1996.
  • 47. Kayıkcı, R. ve Griffiths, W.D., “The Influence of Surface Roughness on Interfacial Heat Transfer during Casting Solidification”, Foundryman, 92, 267-273, 1999.
  • 48. Kayıkcı, R., Metal-Mold Contact and Heat Transfer during Casting Solidification, PhD Thesis, Manchester Materials Science Centre, University of Manchester and UMIST, Manchester, 77-181, 1999.
  • 49. Wang, G.-X. ve Matthys, E.F., “Experimental Determination of the Interfacial Heat Transfer during Cooling and Solidification of Molten Metal Droplets Impacting on A Metallic Substrate: Effect of Roughness and Superheat”, International Journal of Heat and Mass Transfer, 45, 4967–4981, 2002.
  • 50. Gafur, M. A., Nasrul Haque, M. ve Narayan Prabhu, K., “Effect of Chill Thickness and Superheat on Casting/Chill Interfacial Heat Transfer during Solidification of Commercially Pure Aluminum”, Journal of Materials Processing Technology, 133, 257-265, 2003.
  • 51. Akar, N., Katılaşma Sırasında Döküm-Kalıp Ara Yüzeyinde Isı Transfer Katsayısının İncelenmesi, Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, 2006.