Methidathion İnsektisit/Akarisitinin Sitotoksik ve Genotoksik Potansiyelinin Allium Testi ile İncelenmesi
Organik fosforlu pestisitlerden olan Methidathion (Supracide 40 EC, MET), meyve ağaçlarında, sebzelerde, tütünde, yoncada, ayçiçeğinde, seralarda ve gül bahçelerinde çeşitli böcek ve akarlara karşı kullanılmaktadır. Bu araştırmada, Allium testi kullanılarak, methidathionun Allium cepa kök ucu hücrelerindeki sitotoksik ve genotoksik etkileri incelenmiştir. Kök büyüme inhibisyon testi ile, etkili konsantrasyon (EC50) değeri 30 mg/L olarak tespit edildikten sonra, Allium cepa kök uçları, MET’un dört farklı konsantrasyonu (7,5, 15, 30 ve 45 mg/L) ile 12, 24 ve 48 saat muamele edilmiştir. MET, mitotik indeksi (MI), tüm konsantrasyonlarda ve uygulama sürelerinde, kontrole kıyasla anlamlı şekilde düşürmüştür. Diğer yandan MET, kromozomal anormallikleri, kontrole kıyasla anlamlı düzeyde artırmıştır. En yaygın görülen anormallikler kroımozom yapışıklığı (%47,50) ve C-mitoz (%44,24)’dur. Bunları sırasıyla fragment (%2,75), köprü (%2,55), geri kalma (%1,63) ve çok kutupluluk (%1,33) takip etmiştir. Çalışmada ayrıca, ön işleme tabi tutulmuş kök uçlarında kromozom ve kromatid kırıkları, fragmentler ve poliploidi tespit edilmiştir. Bu çalışmadan elde edilen sonuçlar, MET’un Allium cepa'da belirgin şekilde sitotoksik ve genotoksik olduğunu göstermiştir. Ayrıca, Allium testinin, MET’un toksik etkilerini belirlemede çok hassas ve etkili bir test olduğunu doğrulamıştır.
___
- [1] UN. 2015. United Nations, Department of Economic and Social Affairs, Population Division (2015). World
Population Prospects: The 2015 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP.241.
United Nations New York, 2015.
- [2] Carvalho, F. P. (2017). Pesticides, environment, and food safety. Food and Energy Security, 6(2), 48-60.
- [3] İnternet 1: FAO. 2017. http://www.fao.org/faostat/en/#home (Son Erişim Tarihi: 02. 07. 2020).
- [4] İnternet 2: FAO. 2020. http://www.fao.org/faostat/en/#home (Son Erişim Tarihi: 02. 07. 2020).
- [5] Yüzbaşıoğlu, D., Ünal, F. and Sancak C. (2009). Genotoxic effects of herbicide Illoxan (Diclofop-Methyl) on
Allium cepa L. Turkish Journal of Biology, 33, 283-290.
- [6] Mostafalou, S. and Abdollahi, M. (2017). Pesticides: an update of human exposure and toxicity. Archives of
Toxicology, 91(2), 549-599.
- [7] World Health Organization. (2020). The WHO recommended classification of pesticides by hazard and guidelines
to classification 2019. World Health Organization.
- [8] Ünal, G. ve Gürkan, M. O. (2001). İnsektisitler, Kimyasal Yapıları, Toksikolojileri ve Ekotoksikolojileri. Ankara
Üniversitesi Ziraat Fakültesi Bitki Koruma Bölümü, Ankara, 159.
- [9] Singh, K. D., Labala, R. K., Devi, T. B., Singh, N. I., Chanu, H. D., Sougrakpam, S., and Rajashekar, Y. (2017).
Biochemical efficacy, molecular docking and inhibitory effect of 2, 3-dimethylmaleic anhydride on insect
acetylcholinesterase. Scientific Reports, 7(1), 1-11.
- [10] Bedford, C. T. and Robinson, J. (1972). The alkylating properties of organophosphates. Xenobiotica, 2(4), 307-
337.
- [11] Wooder, M. F. and Wright, A. S. (1981). Alkylation of DNA by organophosphorus pesticides. Acta
Pharmacologica et Toxicologica, 49, 51-55.
- [12] Timoroğlu, İ., Yüzbaşıoğlu, D., Ünal, F., Yılmaz S., Aksoy H., and Çelik M. (2014). Assessment of genotoxic
effects of organophosphorus insecticides phorate and trichlorfon in human lymphocytes. Environmental Toxicology,
29, 577-587.
- [13] Ezzi, L., Salah, I. B., Haouas, Z., Sakly, A., Grissa, I., Chakroun, S., and Cheikh, H. B. (2016). Histopathological
and genotoxic effects of chlorpyrifos in rats. Environmental Science and Pollution Research, 23(5), 4859-4867.
- [14] Cortés-Eslava, J., Gómez-Arroyo, S., Risueño, M. C., and Testillano, P. S. (2018). The effects of
organophosphorus insecticides and heavy metals on DNA damage and programmed cell death in two plant models.
Environmental Pollution, 240, 77-86.
- [15] Yahia, D. and Ali, M. F. (2019). Cytogenetic and genotoxic effects of penconazole and chlorpyrifos pesticides in
bone marrow of rats. Journal of Advanced Veterinary Research, 9(2), 29-38.
- [16]İnternet:https://www.tarimorman.gov.tr/Konular/Bitki-Sagligi-Hizmetleri/Bitki-Koruma-Urunleri-VeMakinalari/Bitki-Koruma-Urunleri (Yasaklanan Bitki Koruma Ürünleri Aktif Madde Listesi) (Son Erişim Tarihi:
19.10.2020).
- [17] Ukai, S. and Kakuta, N. (1992). Standard Methods of Chemical Analysis in Poisoning With Commentary.
Pharmaceutical Society of Japan, 4th ed. Nanzandou Co., Tokyo.
- [18] Stivaktakis, P. D., Giannakopoulos, E., Vlastos, D., and Matthopoulos, D. P. (2017). Determination of genotoxic
effects of methidathion alkaline hydrolysis in human lymphocytes using the micronucleus assay and square-wave
voltammetry. Bioelectrochemistry, 113, 9-14.
- [19] Lodovici, M., Casalini, C., Briani, C., and Dolara, P. (1997). Oxidative liver DNA damage in rats treated with
pesticide mixtures. Toxicology, 117, 55-60.
- [20] Kevekordes, S., Gebel, T., Pav K., Edenharder, R., and Dunkelberg, H. (1996). Genotoxicity of selected pesticides
in the mouse bone-marrow micronucleus test and in sister-chromatid exchange test with human lymphocytes in vitro.
Toxicology Letters, 89, 35-42.
- [21] Karabulut A. K. and Yeşilada E. (2014). Genotoxicity testing of tributyltin and methidathion in Drosophila
melanogaster using the wing somatic mutation and recombination test. Fresenius Environmental Bulletin, 23, 3475-
3480.
- [22] Alshehri, M. A. (2014). Cytogenetic effects of methidathion pesticide on rat bone marrow cells. Environmental
Research Journal, 8(2), 48-54.
- [23] Ünal, F., Demir, H., and Yüzbaşioğlu, D. (2017). Genotoxic effects of environmental contaminant methidathion
and triadimenol pesticides. The 3rd International Symposium on EuroAsian Biodiversity 05-08 July 2017, MinskBelarus.
- [24] Bonciu, E., Firbas, P., Fontanetti, C. S., Wusheng, J., Karaismailoğlu, M. C., Liu, D., and Schiff, S. (2018). An
evaluation for the standardization of the Allium cepa test as cytotoxicity and genotoxicity assay. Caryologia, 71(3),
191-209.
- [25] Ma, T. H. (1999). The international program on plant Bioassays and the report of the follow-up study after the
hands-on workshop in China. Mutation Research, 426, 103-106.
- [26] Ma, T. H., Cabrera, G. L., and Owens E. (2005). Genotoxic agents detected by plant bioassays. Reviews on
Environmental Health, 20(1), 1-14.
- [27] Palmieri, M. J., Andrade-Vieira, L. F., Trento, M. V. C., Eleutério, M. W. F., Luber, J., Davide, L. C., et al.
(2016). Cytogenotoxic effects of spent pot liner (SPL) and its main components on human leukocytes and meristematic
cells of Allium cepa. Water Air and Soil Pollution, 227,156.
- [28] Vicentini, V. E. P., Camparoto, M. L., Teixeira, R. O., and Mantovani, M. S. (2001). Averrhoa carambola L.,
Syzygium cumini (L.) Skeels and Cissus sicyoides L.: medicinal herbal tea effects on vegetal and test systems. Acta
Scientiarum, 23(2), 593-598.
- [29] Teixeira, R. O., Camparoto, M. L., Mantovani, M. S., and Vicentini, V. E. P. (2003). Assesment of two medicinal
plants Psidium guajava L. and Achillea millefolium L., in vitro and in vivo assays. Genetics and Molecular Biology,
26(4), 551-555.
- [30] Tedesco, S. B. and Laughinghouse, I. V. H. D. (2012). Bioindicator of genotoxicity: The Allium cepa test. In:
Srivastava J, editor. Environmental Contamination. Croatia: InTech, 137-156.
- [31] Özkul M., Özel Ç.A., Yüzbaşıoğlu D., and Ünal F. (2016). Does 2,4-dichlorophenoxyacetic acid (2,4-D) induce
genotoxic effects in tissue cultured Allium roots? Cytotechnology, 68, 2395-2405.
- [32] Doroftei, E., Antofie, M. M., Sava, D., and Arcus, M. (2010). Cytogenetic effects induced by Manganese and
Lead micro-elements on germination at Allium cepa. Botanica Serbica, 34(2), 115-121.
- [33] Bonciu, E. (2012). Cytological effects induced by Agil herbicide to onion. Journal of Horticulture, Forestry and
Biotechnology, 16(1), 68-72.
- [34] Khanna, N. and Sharma, S. (2013). Allium cepa root chromosomal aberration assay: A review. Indian Journal
of Pharmaceutical Sciences, 1(3), 2320-9267.
- [35] Sarac, I., Bonciu, E., Butnariu, M., Petrescu, and I., Madosa, E. (2019). Evaluation of the cytotoxic and genotoxic potential of some heavy metals by use of Allium test. Caryologia, 72(2), 37-43.
- [36] Leme, D. M. and Marin-Morales, M. A. (2009). Allium cepa test in environmental monitoring: A review on its
application. Mutation Research/Reviews in Mutation Research, 682(1),71-81.
- [37] İnternet: https://www.sigmaaldrich.com/catalog/product/sial/36158?lang=en®ion=TR&cm_sp=Insite-_-
caSrpResults_srpRecs_srpModel_950-37-8-_-srpRecs3-1 (Son Erişim Tarihi: 21.11.2020).
- [38] Fiskesjö, G. (1985). The Allium test as a standard in environmental monitoring. Hereditas, 102(1), 99-112.
- [39] Rank, J. and Nielsen, M.H. (1994). Evaluation of Allium anaphase-telophase test in relation to genotoxicity
screening of industrial wastewater. Mutation Research, 312: 17-24.
- [40] Rank, J. and Nielsen, M.H. (1998). Genotoxicity testing of wastewater sludge using the Allium cepa anaphasetelophase chromosome aberration assay. Mutation Research, 418, 113-119.
- [41] El-Ghamery, A.A., El-Nahas, A.I., and Mansour, M.M. (2000). The action of atrazine herbicide as an inhibitor
of cell division on chromosomes and nucleic acids content in root meristems of Allium cepa and Vicia faba. Cytologia,
65, 277-287.
- [42] Rank, J., Lopez, L.C., Nielsen, M.H., and Moretton, J. (2002). Genotoxicity of maleic hydrazide, acridine and
DEHP in Allium cepa root cells performed by two different laboratories. Hereditas, 136, 13-18.
- [43] Fiskesjö, G. (1988). The Allium test-an alternative in environmental studies: The relative toxicity of metal ions.
Mutation Research, 197, 243-260.
- [44] Kanaya, N., Gill, B.S., Grover, I.S., Murin, A., Osiecka, R., Sandhu, S.S., and Andersson, H.C. (1994). Vicia
faba chromosomal aberration assay. Mutation Research, 310, 231-247.
- [45] Barr, D. B., Allen R., Olsson A. O., Bravo R., Caltabiano, L. M., Montesano, A., Nguyen, J., Udunka, S., Walden,
D., Walker, R.D., Weerasekera, G., Whitehead, R. D. Jr, Schober, S. E., and Needham, L. L. (2005). Concentrations
of selective metabolites of organophosphorus pesticides in the United States population. Environmental Research,
99(3), 314-326.
- [46] Barr, D. B., Olsson, A. O., Wong, L. Y., Udunka, S., Baker, S. E., Whitehead, R. D., Magsumbol, M. S., Williams,
B. L., and Needham, L. L. (2010). Urinary concentrations of metabolites of pyrethroid insecticides in the general U.S.
population: National Health and Nutrition Examination Survey 1999-2002. Environmental Health Perspectives, 118,
742-748.
- [47] Lee, W. J., Sandler, D. P., Blair, A., Samanic, C., Cross, A. J., and Alavanja, M. C. (2007). Pesticide use and
colorectal cancer risk in the Agricultural Health Study. The International Journal of Cancer, 121(2), 339-346.
- [48] Thongprakaisang, S., Thiantanawat, A., Rangkadilok, N., Suriyo, T., and Satayavivad, J. (2013). Glyphosate
induces human breast cancer cells growth via estrogen receptors. Food and Chemical Toxicology, 59, 129-136.
- [49] Luo, D., Zhou, T., Tao, Y., Feng, Y., Shen, X., and Mei, S. (2016). Exposure to organochlorine pesticides and
non-Hodgkin lymphoma: a meta-analysis of observational studies. Scientific Reports, 6, 25768.
- [50] Mostafalou, S. and Abdollahi, M. (2012) Current concerns on genotoxicity of pesticides. International Journal
of Pharmacology, 8, 473-474.
- [51] Shadnia, S., Azizi, E., Hosseini, R., Khoei, S., Fouladdel, S., Pajoumand, A., and Abdollahi, M. (2005).
Evaluation of oxidative stress and genotoxicity in organophosphorus insecticide formulators. Human & Experimental
Toxicology, 24(9), 439-445.
- [52] Sabarwal, A., Kumar, K., and Singh, R. P. (2018). Hazardous effects of chemical pesticides on human healthCancer and other associated disorders. Environmental Toxicology and Pharmacology, 63, 103-114.
- [53] Yüzbaşıoğlu, D. (2003). Cytogenetic effects of fungicide afugan on the meristematic cells of Allium cepa L.
Cytologia, 68(3), 237-243.
- [54] Yüzbaşıoğlu, D., Çelik, M., Yılmaz, S., Ünal, F., and Aksoy, H. (2006). Clastogenicity of the fungicide afugan
in cultured human lymphocytes. Mutation Research, 604, 53-59.
- [55] Sinha, V. S. and Kumar, N. (2014). Assessment of mito-inhibitory and genotoxic effects of two organophosphate
pesticides in the root tip cells of Allium cepa L. Annals of Plant Sciences, 3, 699-703.
- [56] Pandır, D. (2018). Assesment of the genotoxic effect of the Diazinon on root cells of Allium cepa (L.). Brazilian
Archives of Biology and Technology, 61.
- [57] Sheikh, N., Patowary, H., and Laskar, R. A. (2020). Screening of cytotoxic and genotoxic potency of two
pesticides (malathion and cypermethrin) on Allium cepa L. Molecular & Cellular Toxıcology, 16, 291–299.
- [58] Sudhakar, R., Nınge Gowda, K. N., and Venu, G., (2001). Mitotic abnormalities induced by silk dyeing industry
effluents in the cell of Allium cepa. Cytologia, 66, 235-239.
- [59] Jain, A.K. and Andsorbhoy, R.K. (1988). Cytogenetical studies on the effects of some chlorinated pesticides III.
Concluding Remarks. Cytologia, 53, 427-436.
- [60] Hidalgo, A., Gonzales-Reyes, J.A., Navas, P., and Garcia-Herdugo, G. (1989). Abnormal mitosis and growth
inhibition in Allium cepa roots induced by propham and chlorpropham. Cytobios, 57(228), 7-14.
- [61] Chauhan, L. K. S., Dikshith, T. S. S., and Sundararaman, V., (1986). Effects of deltametrin on plant cells I.
Cytological effects on the root meristems of Allium cepa. Mutation Research, 171, 25-30.
- [62] Adesuyi, A. A., Njoku, K. L., Ogunyebi, A. L., Dada, E. O., Adedokun, A. H., Jolaoso, A. O., and Akinola, M.
O. (2018). Evaluation of the cytogenotoxic effects of emulsifiable concentrate form of amitraz pesticide on Allium
cepa L. Journal of Applied Sciences and Environmental Management, 22(11), 1841-1847.
- [63] Klasterska, I., Natarajan, A. T., and Ramel, C. (1976). An interpretation of the orgin of subchromatid aberrations
of chromosome stickiness as a category of chromatid aberrations. Hereditas, 83, 153-162.
- [64] Patil, B.C. and Bhat, G.I. (1992). A comparative study of MH and EMS in the induction of chromosomal
aberrations on lateral root meristem in Clitoria ternata L. Cytologia, 57, 259-264.
- [65] Mc-Gill, M., Pathak, S., and Hsu, T.C., (1974). Effects of ethidium bromide on mitosis and chromosomes: A
possible material basis for chromosomes stickiness. Chromosoma, 47, 157-167.
- [66] Datta, S., Singh, J., Singh, J., Singh, S., Singh S. (2018). Assessment of genotoxic effects of pesticide and
vermicompost treated soil with Allium cepa test. Sustainable Environment Research, 28(4), 171-178.
- [67] Panda, B.B. and Sahu, U.K. (1985). Induction of abnormal spindle function and cytokinesis inhibition in mitotic
cells of Allium cepa by the organophosphorus insecticide fensulfotion. Cytobios, 42, 147-155.
- [68] Ahmad, S. and Yasmin, R., (1992). Effects of methyl paration and tri-miltox on the mitosis of Allium cepa.
Cytologia, 57, 155-160.
- [69] Özkara, A., Akyıl, D., Eren, Y., and Erdoğmuş, S. F. (2015). Potential cytotoxic effect of Anilofos by using
Allium cepa assay. Cytotechnology, 67(5), 783-791.
- [70] Grant, W.F. (1978). Chromosomal aberrations in plants as a monitoring system. Environmental Health
Perspectives, 27, 37-43.
- [71] Kihlman, B.A. (1966). Action of chemicals on dividing cells. Prentice-Hall Inc, Englewood Cliffs, New Jersey.