Lactobacillus Cinsi Bakterilerinin Farklı Yöntemler ile Antioksidan Aktivitelerinin Belirlenmesi

Çalışmada, süt ürünleri kaynaklı Lactobacillus cinsine ait 20 bakterinin beş farklı metot ile (2-difenil-1- pikrilhidrazil (DPPH) serbest radikalini giderme, Fe+2 iyonu şelatlama, plazma lipit peroksidasyonu, hidroksil radikalini süpürücü aktivitesi ve süperoksit anyon radikali süpürücü aktivitesi) antioksidan aktiviteleri araştırılmıştır. Suşların, metotların hepsinde farklı oranlarda antioksidan etki gösterdiği bulunmuştur. Suşların DPPH serbest radikali giderme yeteneği değerlendirildiğinde, Lactobacillus brevis KIR12 suşunda %81,9 oranında en yüksek aktiviteye sahip olduğu belirlenmiştir. Bakterilerin metal şelatlama aktiviteleri %40,5 ile %31,8 arasında değişirken, en yüksek aktiviteyi L. fermentum BP5 suşu göstermiştir. Çalışmada lipit peroksidasyonunun inhibisyonunda suşlar arasındaki en yüksek inhibisyon L. rhamnosus SMC6 suşunda %39,2 olarak, en düşük inhibisyonu ise L. delbrueckii ssp. bulgaricus 12L suşunda %30.2 olarak tespit edilmiştir. Çalışılan kültürler arasında, hidroksil radikalini süpürücü etki gösteren suşların L. fermentum FKK3 (%45,8) ve L. brevis YG7 (%43,6) olduğu belirlenmiştir. Suşlar arasındaki süperoksit radikali süpürücü aktiviteleri kıyaslandığında ise; %75,0 ile %10,4 aralığında değişen değerler tespit edilmiştir. Bu çalışma sonucunda, kullanılan yöntemlere göre bakterilerin antioksidan aktivitelerinde farklılık olduğu belirlenmiştir. Antioksidan aktivitesi yüksek yetenekteki suşların gıda alanında yeni potansiyel antioksidan ajanlar olarak kullanılabilecektir.

___

  • [1] Özenç, B. (2011). Fumaria officinalis’un antioksidan aktivitesinin belirlenmesi. Yüksek Lisans Tezi. Selçuk Üniversitesi Fen Bilimleri Enstitüsü. Konya.
  • [2] Riane, K., Sifour M., Ouled-Haddar, H., Idoui, T., Bounar, S., and Boussebt, S. (2019). Probiotıc properties and antioxidant efficiency of Lactobacillus plantarum 15 isolated from milk. Journal Microbiology Biotechnology Food Science, 9(3), 516-520.
  • [3] Bartkiene, E., Lele, V., Starkute, V., Zavistanaviciute, P., Zokaityte, E., Varinauskaite, I., and Dmitrijeva, L. (2020). Plants and lactic acid bacteria combination for new antimicrobial and antioxidant properties product development in a sustainable manner. Foods, 9(4), 433.
  • [4] Mbah, J.C., Orabueze, I., and Okorie, H. N. (2019). Antioxidants properties of natural and synthetic chemical compounds: Therapeutic Effects on Biological System. Acta Scientific Pharmaceutical Sciences. 3(6), 28-42.
  • [5] Hamid, A. A., Aiyelaagbe, O. O., Usman, L. A., Ameen, O. M., and Lawal, A. (2010). Antioxidants: Its medicinal and pharmacological applications. African Journal of Pure and Applied Chemistry. 4(8), 142-151.
  • [6] Lourenço, S. C., Moldão-Martins, M., and Alves, V. D. (2019). Antioxidants of natural plant origins: From sources to food industry applications. Molecules. 24(22), 4132.
  • [7] Yang, S. J., Lee, J. E., Lim, S. M., Kim, Y. J., Lee, N. K., and Paik, H. D. (2019). Antioxidant and immuneenhancing effects of probiotic Lactobacillus plantarum 200655 isolated from kimchi. Food Science and Biotechnology. 28(2), 491-499.
  • [8] Garcia, S. L. A., Silva, G. M., Medeiros, J. M. S., Queiroga, A. P. R., Queiroz, B. B., Farias, D. R. B., and Buriti, F. C. A. (2020). Influence of co-cultures of Streptococcus thermophilus and probiotic lactobacilli on quality and antioxidant capacity parameters of lactose-free fermented dairy beverages containing Syzygium cumini (L.) skeels pulp. RSC Advances, 10(17), 10297-10308.
  • [9] Spyropoulos, B. G., Misiakos, E. P., Fotiadis, C., and Stoidis, C. N. (2011). Antioxidant properties of probiotics and their protective effects in the pathogenesis of radiation induced enteritis and colitis. Digestive Diseases and Sciences. 56(2), 285-294.
  • [10] Afify, A. E. M. R., Romeliah, R. M., Sultan, S. I., and Hussein, M. M. (2012). Antioxidant activity and biological evaluations of probiotic bacteria strains. International Journal Academic Research. 4(6), 131-139.
  • [11] Zhang, S., Liu, L., Su, Y., Li, H., Sun, Q., Liang, X., and Lv, J. (2011). Antioxidative activity of lactic acid bacteria in yogurt. African Journal of Microbiology Research. 5(29), 5194-5201.
  • [12] Noureen, S., Riaz, A., Saif, A., Arshad, M., Qamar, M. F., and Arshad, N. (2018). Antioxidant properties of Lactobacillus brevis of horse origin and commercial lactic acid bacterial strains: A comparison. Pakistan Veterinary Journal. 38(3).
  • [13] Li, S., Zhao, Y., Zhang, L., Zhang, X., Huang, L., Li, D., and Wang, Q. (2012). Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chemistry. 135(3), 1914- 1919.
  • [14] Decker, E.A. and Welch, B. (1990). Role of ferritin as a lipid oxidation catalyst in muscle food. Journal of Agricultural and Food Chemistry. 38(3), 674-677.
  • [15] Ou, C., Ko, J., and Lin, M. (2006). Antioxidative effects of intracellular extracts of yogurt bacteria on lipid peroxidation and intestine 407 cells. Journal of Food and Drug Analysis. 14(3), 304-310.
  • [16] Wang, J., Zhao, X., Yang, Y., Zhao, A., and Yang, Z. (2015). Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. International Journal of Biological Macromolecules. 74, 119-126.
  • [17] Amaretti, A., Di Nunzio, M., Pompei, A., Raimondi, S., Rossi, M., and Bordoni, A. (2013). Antioxidant properties of potentially probiotic bacteria: In vitro and in vivo activities. Applied Microbiology and Biotechnology. 97(2), 809- 817.
  • [18] Chang, C. K., Wang, S. C., Chiu, C. K., Chen, S. Y., Chen, Z. T., and Duh, P. D. (2015). Effect of lactic acid bacteria isolated from fermented mustard on immunopotentiating activity. Asian Pacific Journal of Tropical Biomedicine. 5, 281–286.
  • [19] Mishra, V., Shah, C., Mokashe, N., Chavan, R., Yadav, H., and Prajapati, J. (2015). Probiotics as potential antioxidants: A systematic review. Journal of Agricultural and Food Chemistry. 63(14), 3615-3626.
  • [20] Ji, K., Jang, N. Y., and Kim, Y. T. (2015). Isolation of lactic acid bacteria showing antioxidative and probiotic activities from kimchi and infant feces. Journal of Microbiology and Biotechnology. 25(9), 1568–1577.
  • [21] Lin, M. Y. and Chang, F. J. (2000). Antioxidative effect of intestinal bacteria Bifidobacterium longum ATCC 15708 and Lactobacillus acidophilus ATCC 4356. Digestive Diseases and Sciences. 45(8), 1617-1622.
  • [22] Virtanen, T., Pihlanto, A., Akkanen, S., and Korhonen, H. (2007). Development of antioxidant activityin milk whey during fermentation with lactic acid bacteria. Journal of Applied Microbiology. 102(1), 106-115.
  • [23] Miguel, M. G. (2010). Antioxidant and anti-inflammatory activities of essential oils: A short review. Molecules. 15(12), 9252-9287.
  • [24] Rival, S. G., Boerriu, C. G., and Wichers, H. J. (2001). Caseins and casein hydrolysates antioxidative properties and relevance to lipoxygenase inhibition. Journal of Agricultural and Food Chemistry. 49, 295-302.
  • [25] Yarsan, E. (1998). Lipid peroksidasyon olayı ve önlenmesine yönelik uygulamalar. Yüzüncü Yıl Üniversitesi Veteriner Fakültesi Dergisi. 9(1), 89-95.
  • [26] Kaizu, H., Sasaki, M., Nakajima, H. and Suzuki, Y. (1993). Effect of antioxidative lactic acid bacteria on rats fed a diet deficient in vitamin E. Journal of Dairy Science, 76, 2493–2499.
  • [27] Zhang, L., Liu, C., Li, D., Zhao, Y., Zhang, X., Zeng, X., and Li, S. (2013). Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. International Journal of Biological Macromolecules. 54, 270-275.
  • [28] Ayyash, M., Olaimat, A., Al-Nabulsi, A., and Liu, S. Q. (2020). Bioactive properties of novel probiotic Lactococcus lactis fermented camel sausages: Cytotoxicity, angiotensin converting enzyme inhibition, antioxidant capacity, and antidiabetic activity. Food Science of Animal Resources. 40(2), 155.
  • [29] Herna´ndez-Ledesma, B., Da´valos, A., Bartolome, B., and Amigo, L. (2005). Preparation ofantioxidant enzymatic hydrolysates from alpha-lactalbumin and beta-lactoglobulin identification of active peptides by HPLCMS/MS. Journal of Agricultural and Food Chemistry. 53, 588–593.
  • [30] Kudoh, Y., Matsuda, S., Igoshi, K., and Oki, T. (2001). Antioxidative peptide from milk fermented with Lactobacillus delbrueckii subsp. bulgaricus IFO13953. Nippon Shokuhin Kagaku Kaishi. 48, 44–55.
  • [31] Adebayo-Tayo, B. and Fashogbon, R. (2020). In vitro antioxidant, antibacterial, in vivo immunomodulatory, antitumor, and hematological potential of exopolysaccharide produced by wild type and mutant Lactobacillus delbureckii subsp. bulgaricus. Heliyon. 6(2), e03268.
  • [32] Wilson, T. A., Nicolosi, R. J., Chrysam, M., and Kritchevsky, D. (2000). Conjugated linoleic acid reduces early aortic atherosclerosis greater than linoleic acid in hyercholestrelomic hamsters. Nutrition Research. 20(12), 1795- 1805.