Yakıt hücrelerinin tarihsel gelişimi, çalışma prensipleri ve bugünkü durumu

Son yıllarda, alternatif yakıtların önem kazanması ve kirletici emisyonların azaltılmasına yönelik önlemlerin alınmaya başlanması, yakıt hücrelerine olan ilgiyi giderek artırmaktadır. Bu çalışmada, öncelikle, yakıt hücrelerinin ilk keşfinden günümüze kadar olan tarihsel gelişimi anlatılarak, genel yapısı, tipleri ve çalışma prensipleri ayrıntılı olarak ele alındı. Daha sonra, yakıt hücrelerini sınıflandırma yöntemlerinden bahsedilerek, bugün ulaşmış olduğu seviye ve karşılaşılan problemler özet olarak sunuldu. Son olarak, yakıt hücrelerindeki teknolojik gelişmeleri içeren makalelerin, 1995-2002 yıllan arasında yürütülen modelleme çalışmalarının ve uygulama alanlarına göre sınıflandırılan çalışmaların bazıları tablolar halinde verildi.

Historical development, working principles and state-of-the-art of fuel cells

In the last years, the attention on the fuel cells has been gradually increased due to getting alternative fuels more important and starting to be taken precautions on the reduction of polluting emissions. In this study, first, the historical development of fuel cells from its first invention to present was described and their general structure, types and working principles were treated in detail. Then, classification methods of fuel cells were mentioned and the state of the art and the problems facing about fuel cells were briefly presented. Finally, some of the articles including technological progress, the modelling studies conducted between 1995 and 2002, and the studies classified according to their application areas were given in tables.

___

  • 1.Grove, William R.,"On Voltaic Series and the Combination of Gases by Platinum." Philosophical Magazine and Journal of Science, 14 (86): 127 (1839).
  • 2.Grove, William R. "On a Gaseous Voltaic Battery." Philosophical Magazine and Journal of Science, 21 (140): 417 (1842).
  • 3.Stone, C, Morrison, A.E., "From criosity to 'power to change the world'," Solid State Ionics, 152-153:1-13 (2002).
  • 4.Jacques, W.W, Harper's Mag., 94:144 (1896).
  • 5.Liebhafsky, H.A., Cairns, E.J., "Fuel Cells and Fuel Batteries", Wiley, New York, 34-42 (1968).
  • 6.Bacon, V.T.Jnt. J. Hydrogen Energy, 10 (7/8):423 (1985).
  • 7.Anon., Business Week, 68 (17 Ekim 1959).
  • 8.Liebhafsky, H.A., Cairns, E.J., "Fuel Cells and Fuel Batteries", Wiley, New York, 34-42 (1968).
  • 9.Grove, William R., "On Voltaic Series and the Combination of Gases by Platinum." Philosophical Magazine and Journal of Science, 14 (86): 127 (1839).
  • 10.Grubb, W.T., General Electric, US Patent 2,913,511 (1959).
  • 11.Dyer, CK.,Nature, 343:547 (1990).
  • 12.Donitz, W., "Fuel cells for mobile applications, status, requirements and future application potential," Int. J. Hydrogen Energy, 23 (7): 611-615 (1998).
  • 13.Buchi, F.N., Gupta, B., Haas, O. ve Schere, G.G., "Study of radiation-grafted FEP-G-polystyrene membranes as polymer electrolytes in fuel cells," ElectrochimicaActa, 40:345-353 (1995).
  • 14.Antonucci, P.L., Arico, A.S., Creti, P., Ramunni, E. ve Antonucci, V, "Investigation of a direct methanol fuel cell based on a composite Nafion-silica electrolyte for high temperature operation," Solid State Ionics, 125:431-437(1999).
  • 15.Steele, B.C.H., "Material science and engineering: The enabling technology for the commercialisation of fuel cell systems," Journal of Materials Science, 36:1053-1068 (2001).
  • 16.Singhal, S.C., "SOFC VI", Electrochem. Soc, New Jersey, USA 99(19):39 (1999).
  • 17.Appleby, A.J., "Fuel cell technology: Status and future prospects," Energy, 21(7/8): 521-653 (1996).
  • 18.Louis, J. J.J., "Fuel Cell Power for Transportation 2001," Society of Automotive Engineers, Warrendale, PA (2001).
  • 19.General Motors, Argonne national laboratory, BP amoco, ExxonMobil and Shell, "Well-to-Wheel Energy Use and Greenhouse Gas Emissions of Advanced Fuel/Vehicle Systems-North American Analysis," US DOE Office of Transportation Technologies, Draft Final Report, Washington, DC, 1 (2001).
  • 20.Anon, Economist, 358 (8208):13 (2001).
  • 21.International energy agency, "World Energy Outlook 2000," IEA Publications, Paris, France (2000).
  • 22."Kyoto protocol to the united nations framework convention on climate change," Arahk (1997).
  • 23.Intergovermental Panel on Climate Change, in: J.T. Houghton (Ed.), Report of Working Group 1 of the Intergovermental Panel on Climate Change, Climate Change 2001: The Scientific Basis, Summary for Policymakers, Cambridge Univ. Press, New York, NY (2001).
  • 24.American Public Power Association, "Notice of Market Opportunities for Fuel Cells," American Public Power Association, Washington, DC (1988).
  • 25.Van der Veer, J, "Plenary speech," 16th World Petroleum Congress, Calgary, 13 Haziran (2000).
  • 26.Contadini, J.F, Proc. IECEC 2000, 35th Intersociety Energy Conversion Engineering Conference and Exhibit, American Institute of Aeronautics and Astronautics, Reston, VA, 1341 (2000).
  • 27.F. Baentsch, "Liberalisation-challenges and opportunities for fuel cells," /. Power Sources 86: 84-89 (2000).
  • 28.Zhu, B., Meng, G, Mellander, B.E, "Non-conventional fuel cell systems: new concepts and development," Journal of Power Sources, 79:30-36 (1999).
  • 29.Joon,K., "Fuel cells-a 21st century power system," Journal of Power Sources, 71:12-18 (1998).
  • 30.Scott, K., Taama, W, Cruickshank, J, "Performance and modelling of a direct methanol solid polymer electrolyte fuel cell," Journal of Power Sources, 65:159-171 (1997).
  • 31."NL3BAND.C nonlinear tridiagonal band solver," copywright 1991 Technical Software Distributors.
  • 32.White, R.E., Ind. Eng. Chem. Fundam., 17:367 (1978).
  • 33.Maggio, G., Recupero, V., Mantegazza, C, "Modelling of temperature distribution in a solid polymer electrolyte fuel cell stack," Journal of Power Sources, 62:167-174 (1996).
  • 34.Informative Brochure, "Solid Polymer Fuel Cell (SPFC) at De Nora", De Nora SpA, Bistolfi 35,20134-Milan. (2): 95 Apr. (1995).
  • 35.Freni, S., Maggio, G., Passalacqua, E. "Modeling of porous membranes for molten carbonate fuel cells," Materials Chemistry and Physics, 48:199-206 (1997).
  • 36.Fontes, E., Lagergren, C, Simonsson, D., "Mathematical modelling of the MCFC cathode on the linear polarisation of the NiO cathode," Journal ofElectroanalytical Chemistry, 432:121-128 (1997).
  • 37.Wohr, M. vd., "Dynamic modelling and simulation of a polymer membrane fuel cell including mass transport limitation," Int J. Hydrogen Energy, 23(3): 213-218 (1998).
  • 38.Xui-Mei, G., Hidajat, K., Ching, C, "Simulation of a solid oxide fuel cell for oxidative coupling of methane," Catalysis Today, 50:109-116 (1999).
  • 39.Jang-Ho Jo, Sung-Chul Yi, "A computational simulation of an alkaline fuel cell," Journal of Power Sources, 84:87-106(1999).
  • 40.Newman, J., Ind. Eng. Chem. Fundam., 7:514 (1968).
  • 41.Baschuk, J. J., Li, X., "Modelling of polymer electrolyte memebrane fuel cells with variable degrees of water flooding," Journal of Power Sources, 86:181-196 (2000).
  • 42.Marr, C.L., "Performance modelling of a proton exchange membrane fuel cell," Master Tezi, MakinaMuh. BoL, University of Victoria, Canada (1996).
  • 43.Marr, C.L., Li, X., "Composition and performance modelling of catalyst layer in a proton exchange membrane fuel cell," JPower Sources, 11:17-27 (1999).
  • 44.Kim, J., Lee, S., Srinivasan, S., "Modeling of proton exchange membrane fuel cell performance with an emprical equation," /. Electrochem. Soc, 142(8): 2670-2674 (1995).
  • 45.Voss, H.H. vd., "Anode water removal: a water management and diagnostic technique for solid polymer fuel cells," Electrochem. Ada, 40(3): 321-328 (1995).
  • 46.Ledjeff-Hej, K., Heinzel, A., "Critical issues and future prospects for solid polymer fuel cells," /. Power Sources, 61:125-127(1996).
  • 47.Sundmacher, K. vd., "Dynamics of the direct methanol fuel cell(DMFC): experiments and model-based analysis," Chemical Engineering Science, 56:333-341 (2001).
  • 48.Trankle, F. vd., "Pro-MoT/DIVA: A prototype of a process modeling and simulation environment," IMACS symposium on mathematical modelling (Editorler: I. Troch & F. Breitenecker), 2nd MATHMOD, ARGESIM Report No. 11,341-346 (1997).
  • 49.Kriegsmann, J. J., Cheh, H.Y., "A binary electrolyte model of a cylindrical alkaline cell," Journal of Power Sources, 85:190-202 (2000).
  • 50.Podlaha, E.J., Cheh, H.Y., "Modeling of cylindrical alkaline cells. VII. A wound cell model," /. Electrochem. Sog,141(7):1751(1994).
  • 51.Newman, J.S., "Electrochemical Systems 2nd ed..," Prentice-Hall, Englewood Cliffs, NJ (1991).
  • 52.Van Zee, J., Kleine, G., White, R.E., Newman, J. "Electrochemical Cell Design," Plenum, New York, 377-389 (1984).
  • 53.Podlaha, EJ.,Doktora Tezi, Columbia i/raW,sHfy,Newyork(1992).
  • 54.Bennion, DN.,AIChESymp. Ser., 79:25 (1983).
  • 55.Palsson, J., Selimovic, A., Sjunnesson, L., "Combined solid oxide fuel cell and gas turbine system for efficient power and heat generation," Journal of Power Sources, 86:442-448 (2000).
  • 56.Sammes,N.M., Boersma, R., "Small-scale fuel cells for residential applications," Journal of Power Sources, 86:98-110(2000).
  • 57.Scherer, G.W.H., Newson, E., Wokaun, A., "Economic analysis of the seasonal storage of electricity with liquid organic hydrides," International Journal ofHydrogen Energy, 24:1157-1169 (1999).
  • 58.Jansen, D., Mozaffarian, M., "Advanced fuel cell energy conversion systems," Energy Conv. Manage., 38(10-13): 957-967 (1997).
  • 59.Prater, K.B., "Solid polymer fuel cells for transport and stationary applications," Journal of Power Sources, 61:105-109(1996).
  • 60.Ledjeff-Hej, K., Heinzel, A., "Critical issues and future prospects for solid polymer fuel cells," /. Power Sources, 61:125-127 (1996). 61.Lin, B., "Conceptual design and modeling of a fuel cell scooter for urban Asia," Journal of Power Sources, 86:202-213(2000).
  • 62.Sattler, G., "Fuel cells going on-board," Journal of Power Sources, 86:61-67 (2000).
  • 63.McNicol, B.D., Rand, D.A.J., Williams, K.R., "Direct methanol-air fuel cells for road transportation," Journal of Power Sources, 83:15-31 (1999).
  • 64.De Geeter, E., Mangan, M., Spaepen, S., Stinissen, W., Vennekens, G., "Alkaline fuel cells for road traction," Journal of Power Sources, 80:207-212 (1999).
  • 65.Chalk, S.G., Miller, J.F., Wagner, F.W., "Challenges for fuel cells in transport applications," Journal of Power Sources, 86:40-51 (2000).
  • 66.Klaiber, T., "Fuel cells for transport: can the promise be fulfilled? Technical requirements and demands from customers," Journal of Power Sources, 61:61-69 (1996).
  • 67.Atwater, T.B., Cygan, P. J., Leung, F.C., "Man portable power needs of the 21 st century I. Applications for the dismounted soldier. II. Enhanced capabilities through the use of hybrid power sources," Journal of Power Sources, 91:27-36 (2000).
  • 68.Singhal, S.C., "Advances in solid oxide fuel cell technology," Solid State Ionics, 135:305-313 (2000).
  • 69.Gardner, F.J., Day, M J., Brandon, N.P., Pashley, M.N., Cassidy, M., "SOFC technology development at Rolls-Royce," Journal of Power Sources, 86:122-129 (2000).
  • 70.Kordesch, K., Hacker, V., Gsellmann, J., Cifrain, M., Faleschini, B., Enzinger, P., Fankhause, R., Ortner, M., Muhr, M., Aronson, R.R., "Alkaline fuel cells applications," Journal of Power Sources, 86:162-165 (2000).
  • 71.Waidhas, M., Drenckhahn, W, Preidel, W, Landes, H., "Direct-fuelled fuel cells," Journal of Power Sources, 61:91-97(1996).
  • 72.Gilzow, E., "Alkaline fuel cells: acritical view," Journal of Power Sources, 61:99-104 (1996).
  • 73.Smith, W, "The role of fuel cells in energy storage," Journal of Power Sources, 86:74-83 (2000).
  • 74.Kordesch, K., Hacker, V., Gsellmann, J., Cifrain, M., Faleschini, G., Enzinger, P., Fankhauser, R., Ortner, M., Muhr, M., Aronson, R.R., "Alkaline fuel cells applications," Journal of Power Sources, 86:162-165 (2000).
  • 75.Steele, B.C.H., "Material science and engineering: The enabling technology for the commercialisation of fuel cell systems," Journal of Materials Science, 36:1053-1068 (2001).
  • 76.Jiang, R., Chu, D., "Stack design and performance of polymer electrolyte membrane fuel cells," Journal of Power Sources, 93:25-31 (2001).