Mechanical behavior of wood under torsional and tensile loadings

Ağaç ve ağaç ürünleri önemli yapı malzemeleri arasında bulunmaktadır. Günümüzde, tasarımcılar ağaç yapı tasarımlarını; mühendislik prensipleri içerisinde gerçekleştirmeyi öğrendiler. Böylece, yapısal tasarımcılar kullandıkları malzemelerin özelliklerini ve davranışlarını bilmek zorundadırlar. Ağacın özellikleri ve davranışları, onların organik yapılarını dikkate aldığımızda, diğer malzemelerden oldukça farklı ve karmaşıktır. Bu çalışmada, çekme ve burulma deneyleri, Türkiyedeki kayın, çam ve meşe ağaçlarının mekanik davranışlarını incelemek için yapılmıştır. Çalışma sırasında ağaç, yanal ortotropik fiber yapılı kompozit olarak değerlendirilmiştir. Gerilme-genleme grafikleri, eğer varsa elastik ve plastik bölgeleri, akma noktalarını ve ek olarak fiber kompozit elastik malzeme sabitlerini bulmak için oluşturularak incelenmiştir. Sonuçlar yaklaşık hata oranları arasında elde edilmiştir. Araştırmanın sonunda ise, gerilme boşalması testleri çam ve kayın ağaçlarının üzerinde burulma yüklemesi altında test edilmiştir.

Burulma ve çekme yüklemeleri altında ağacın mekanik davranışları

Wood and wood products are among important construction materials. More recently, designers have learned to design wood structures in ways that are based on engineering principles. In doing this, a structural designer must be familiar with the properties and behavior of the material. The properties and behavior of wood are unlike those for other materials and much more complex by considering their organic structure. In this study, torsion and tensile tests were performed in order to examine the mechanical behaviors of Turkish beech, pine and oak woods. In doing this, wood is considered as a transversely isotropic fiber composite material. The stress-strain curves were constituted and examined in order to show the elastic and plastic regions, the.yield points if they are exist and additionally fiber composite elastic material constants of them. They were determined within the approximate error ranges. At the end of the research, stress relaxation tests were applied on both pine and beech woods under torsion loadings.

___

  • 1.Stalnaker, J.J. , Harris, E.C., "Structural design in wood", Structural Engineering Series, Van Nostrand Reinhold NY, USA, 20-31,33-43,364-385 (1989). 2.Wood, L.W., "Behavior of wood under continued loading", Engineering News Record, 11:25 (1947). 3.Hayashi- K, Felix,B., LE-Govic,C.,"Wood viscoelastic compliance determination with special attention tomeasurement problems", Materials and Structures Materiaux et Constructions, 26(160):370-376(l 993). 4.Woodward,C. Minor,J., "Failure theories for dougles-fir intension", J-Struct-Eng,114(12):2808-2813 (1988). 5.Mack, J.J., "Australian methods for mechanically testing small clear specimens of timber", Commonwealth Scientific and Industrial Research Organization. Division of Building Research, Technical Paper (31), Melbourne, 1-19 (1979). 6.ASTM , "Standard methods for testing small clear specimens of timber", American Society for Testing and Materials, 143-52,1972. 7.Yamasaki,M., Sasaki,Y., "Failure behavior of wood (Japanese Cypress) under combined axial force and torque", Transactions of the Japan Society of Mechanical Engineers, 66(648): 172-179(2000) 8.Yamasaki,M., Sasaki,Y., "Effect of loading method on the elastic properties of wood(Japanese Cypress) under combined axial force and torque", Transactions of the Japan Society of Mechanical Engineers, 66(652): 48-54(2000). 9.TS 2470, "Wood sampling methods and general requirements for physical and mechanical tests", Turkish Institute of Standards, Ankara. 1-5 (1976). 10.TS 53, "Wood sampling and test methods- determination of physical properties", Turkish Institute of Standards, Ankara, 1-4(1981). 11.TS 2475, "Wood-determination of ultimate tensile stress parallel to grain", Turkish Institute of Standards,Ankara, 1-2 (1976). 12.TS 2471 ,"Wood - Determination of moisture content for physical and mechanical tests", Turkish Institute of Standards, Ankara 1-2 (1976). 13.BS 373, "Methods of testing small clear specimens of timber", British Standards Institution, 1-3 (1957). 14.TQ, TecQuipment SM21 torsion testing machine manual,1,Bosall Street, Nottingham, England (1) 1-20 (1982). 15.Şekeroğlu, U.,"Torsion tests of homogeneous and nonhomogeneous materials", Gazi Univ.,Mechanical Eng.Department, Final Project, January, App.B (2001). 16.Kongur,Ö., "Determination of elastic constants of homogeneous and nonhomogeneous materials", Gazi Univ., Mechanical Eng.Department, Final Project June 1-175 (2001). 17.Şentürk,B.S.," Ağaç/ağaç türevi ve kompozit malzemelerin mekanik özelliklerinin deneysel çalışmalarla belirlenmesi", Gazi Univ., Mechanical Eng.Department, Final Project, January 1-84 (2002). 18.DARTEC,,"M9500 Hydraulic tensile test machine workshop user's guide", DARTEC Ltd. ,UK,(1994). 19.Lekhnitski,S.G.,"Theory of elasticity of an anisotropic elastic body", Holden-Day, San Francisco, 1 -60 (6): (14-16) (1963). 20.Chandrupatla, T.R.,Belegundu, A.D., "Introduction to finite elements in engineering", 2nd Ed., Prentice Hall, New Jersey, 155-158 (1997). 21.Hibbeler, R.C., "Mechanics of materials", 4th Ed., Prentice Hall, USA, App (1991). 22.Riley, W.F.,Sturges,L.D., Morris,D.H.,"Mechanics of materials", 5th Ed., John Wiley & Sons Inc., NewYork, App (1999). 23.Beer, P. F, Johnston, E.R., "Mechanics of materials", 2nd Ed. In SI Units, McGraw- Hill, UK, App (1992)