Yeni Nesil MIL-101 Malzemesi Sentez ve Karakterizasyon Çalışmaları

Metal Organik Yapılar (MOFs) sınıfına giren MIL-101, son yıllarda yapılan çalışmalarda, gelecek vaat eden uygulamalarıyla oldukça dikkat çekmektedir. Nem ve diğer kimyasallara karşı olağanüstü bir kararlılık sergileyen MIL-101, eşsiz kristal yapı kombini ile doyamamış krom sitelerinden oluşması gibi üstün özellikleri ile ayırma süreçleri ve kataliz uygulamalarında kullanımı önem kazanmıştır. Yapılan çalışmada MIL-101 hidrotermal yöntemle sentezlenmiş ve karakterizasyonu XRD, azot adsorpsiyon-desorpsiyon analizleri ve SEM ile yapılmıştır. XRD desenleri MIL-101 karakteristik piklerini taşıdığı göstermiş ve yüksek yüzey alanlı (~2400 m2/g) malzeme elde edilmiştir. Azot adsorpsiyon-desorpsiyon analizleri sonucunda malzemenin mezogözenekli malzeme davranışı gösterdiği görülmüştür. 

Synthesis and Characterization Studies of MIL-101

MIL-101 is a kind of Metal Organic Frameworks (MOFs), which have attracted much attention in the past decade due to its promising application in chemical industries. MIL-101 is also known as “Porous Chromium Terephthalate”. It has very high surface area and pore volume. MIL-101 exhibits exceptional stability against moisture and other chemicals and is composed of coordinately unsaturated Cr- sites with high concentration available for catalysis and adsorption. MIL-101 was synthesized by hydrothermal method and characterized by XRD, nitrogen adsorption and desorption analyses and SEM. XRD patterns show the presence of MIL-101’s crystal structure with high surface area (~2400 m2/g). Nitrogen adsorption-desorption analyzes showed that the material exhibited mesoporous material behavior.

___

  • 1. Henchel, A., Gedrich, K:, Kraehnert, R., Kaskel, S., “ Catalaytıc properties of MIL-101”, Chemical Communications, Cilt 35, 4192-4194, 2008. 2. Hong, D-Y., Hwang Y.K., Serre, C., Fe´Rey, G., Chang J-S., “Porous Chromium Terephthalate MIL-101 with Coordinatively Unsaturated Sites: Surface Functionalization, Encapsulation, Sorption and Catalysis”, Advanced Functional Materials, Cilt 19, 1537-1552, 2009. 3. Lee, Y-R., Kım, J., Ahn W-S., “Synthesis of metal-organic frameworks, Department of Chemistry and Chemical Engineering”, Korean Journal of Chemical Engineering, Cilt 309: 1667-1630, 2013. 4. Park, E.Y., Hasan, Z, Ahmed, I., Jhung, S.H., “Preparation of aComposite of Sulfated Zirconia/Metal Organic Framework and its Application in Esterification Reaction”, Bull.Korean Chemical Soceity, Cilt 35, 1659-1664, 2014. 5. Behvandi, A, Safekordi, A.A., Khorasheh, F, “Removal of benzoic acid from industrial wastewater using metal organic frameworks: equilibrium, kinetic and thermodynamic study” Journal of Porous Materials, Cilt 24, No 1, 165-178, 2017. 6. Darunte, L.A., Oetomo, A.D., Walton, K.S., Sholl, D.S., Jones, C.W., “Direct Air Capture of CO2 Using Amine Functionalized MIL-101(Cr)” ACS Sustainable Chemistry & Engineering, Cilt 4, No 10, 5761-5768, 2016. 7. Blanita, G., Streza, M., Lazar, M.D., Lupu, D., “Kinetics of hydrogen adsorption in MIL-101 single pellets”, International Journal Of Hydrogen Energy, Cilt 42, No 5, 3064-3077, 2017. 8. Preiss, T., Zimpel, A., Wuttke, S., Radler, J.O., “Kinetic Analysis of the Uptake and Release of Fluorescein by Metal-Organic Framework Nanoparticles”, Materials, Cilt 10, No 2, 216, 2017. 9. Lewis, R. J. Sr. “Hawley's Condensed Chemical Dictionary (15. Basım)”, John Wiley & Sons., New York, 2007. 10. Park, C. M., Sheehan R.J., “Phthalic Acids and Other Benzenepolycarboxylic Acids”, Kirk-Othmer Encyclopedia of Chemical Technology, John Wiley & Sons. New York, 2000.