Rasemik Propranololün Biyokatalitik Yükseltgenme Tepkimesi için Uygun Mikroorganizma Seçimi

Propranolol; farmasötik açıdan önem taşıyan, özellikle kardiyovasküler hastalıkların tedavisinde yaygın olarak kullanılan β-blokerlardan biridir. Bu çalışmada, propranololün enantiyomerik saflıkta üretiminin, rasemik propranololün ardışık yükseltgenme-indirgenme tepkimelerini içeren biyokatalitik derasemizasyonu prosesiyle gerçekleştirilmesi amaçlanmaktadır. Bu kapsamda öncelikle rasemik propranololün yükseltgenme tepkimesinde kullanılacak uygun mikroorganizma araştırılmıştır. Propranololün yükseltgenmesi için alkol dehidrojenaz (ADH) enzimi ve bu enzimin aktivite gösterebilmesi amacıyla ihtiyaç duyulan kofaktörün rejenerasyonu için ise NADH oksidaz enzimi gereklidir. Bu doğrultuda, tepkimede enzim kaynağı olarak kullanılacak mikroorganizmanın seçimi için farklı mikroorganizmalardaki (Lactobacillus kefir NRRL B-1839, Rhodotorula glutunis DSM 70398, Rhizopus oryzae CBS 111718, Rhizopus arhizus) ADH ve NADH oksidaz aktiviteleri ölçülmüştür. Kullanılan mikroorganizmalar arasında en yüksek ADH ve NADH oksidaz aktivitesi L. kefir’de bulunmuştur.

Selection of Suitable Microorganism for Biocatalytic Oxidation Reaction of Racemic Propranolol

Propranolol is one of the β-blockers which are pharmaceutically important, especially used for treatment of cardiovasculer disease. In this study, the production of enantiomerically pure propranolol was aimed via biocatalytic deracemization including tandem oxidation-reduction reactions of racemic propranolol. Within this content, firstly suitable microorganism for the oxidation of racemic propranolol was investigated. Alcohol dehydrogenase (ADH) enzyme for oxidation of propranolol and NADH oxidase enzyme for cofactor regeneration were necessary for the oxidation reactions. For this reason, ADH and NADH oxidase enzymes activities of different microorganisms were measured to select the microorganism for using as enzyme source. These microorganisms are Lactobacillus kefir NRRL B-1839, Rhodotorula glutunis DSM 70398, Rhizopus oryzae CBS 111718, Rhizopus arhizus. The highest ADH and NADH oxidase activities were obtained for L. kefir.

___

  • [1]. Agustian, J., Kamaruddin, A.H., Bhatia, S., “Single enantiomeric β-blockers-The existing Technologies”, Process Biochem., Cilt 45, 1587-1604, 2010.
  • [2]. Lund, I.T., Bockmann, P.L., Jacobsen, E.E., “Highly enantioselective CALB-catalyzed kinetic resolution of building blocks for β-blocker atenolol”, Tetrahedron, Cilt 72, 7288-7292, 2016.
  • [3]. Mehvar, R., Brocks, D.R., “Stereospecific Pharmacokinetics and Pharmacodynamics: Cardiovascular Drugs (Chapter 7)”, Chirality in drug design and development, Editors; Reddy I.K. and Mehvar R., Marcel Dekker, New York, 281-350, 2004.
  • [4]. Zelaszczyk, D., Kononowicz, K.K., “Biocatalytic approaches to optically active β-blockers”, Curr. Med. Chem., Cilt 14, 53-65, 2007.
  • [5]. Kamal, A., Khanna, G.B.R., Krishnaji, T., Tekumalla, V., Ramu, R., “New chemoenzymatic pathway for β-adrenergic blocking agents”, Tetrahedron: Asymmetry, Cilt 16, 1485-1494, 2005.
  • [6]. Santoro, M.I.R.M., Cho, H.S., Kedor-Hackmann, E.R.M., “Enantiometric separation and quantitative determination pf propranolol in tablets bu chiral high-performance liquid chromatography”, Drug Dev. Ind. Pharm., Cilt 27, No 7, 693-697, 2001.
  • [7]. Kamal, A., Sandbhor, M., Shaik, A.A., “Chemoenzymatic synthesis of (S) and (R)-propranolol and sotalol employing one-pot lipase resolution protocol”, Bioorganig & Medicinal Chemistry Letters, Cilt 14, 4581-4583, 2004.
  • [8]. Escorcia, A.M., Molina, D., Daza, M.C., Doerr, M., “Acetylation of (R,S)-propranolol catalyzed by Candida antarctica lipaseB: An experimental and computational study”, J. Mol. Catal. B: Enzym., Cilt 98, 21-29, 2013.
  • [9]. Stoschitzky, K., Lindner, W., Zernig, G., “Racemic beta-blockers-fixed combinations of different drugs”, Journal of Clinical and Basic Cardiology, Cilt 1 No 1, 15-19, 1998.
  • [10]. Kong, X.D., Yu, H.L., Yang, S., Zhou, J., Zeng, B.B., Xu, J.H., “Chemoenzymatic synthesis of (R)- and (S)-propranolol using anengineered epoxide hydrolase with a high turnover number”, J. Mol. Catal. B: Enzym., Cilt 122, 275-281, 2015.
  • [11]. Li, B., Nie, Y., Mu, X.Q., Xu, Y., “De novo construction of multi-enzyme system for one-pot deracemization of (R,S)-1-phenyl-1,2-ethanediol by stereoinversion of (S)-enantiomer to the corresponding counterpart”, J. Mol. Catal. B: Enzym., Cilt 129, 21-28, 2016.
  • [12]. Solano, D.S., Hoyos, P., Hernaiz, M.J., Alcantara, A.R., Sanchez-Montero, J.M., “Industrial biotransformations in the synthesis of building blocks leading to enantiopure drugs”, Bioresour. Technol., Cilt 115, 196-207, 2012.
  • [13]. Sudar, M., Findrik, Z., Domanovac, M. V., Racki, D.V., “Coenzyme regeneration catalyzed by NADH oxidase from Lactococcus lactis”, Biochem. Eng. J. , Cilt 88, 12-18, 2014.
  • [14]. Damle, S.V., Patil, P.N., Salunkhe, M.M., “Biotransformations with Rhizopus arrhizus and Geotrichum candidum for the preparation of (S)-Atenolol and (S)-Propranolol”, Bioorganic&Medicinal Chemistry, Cilt 8, 2067-2070, 2000.
  • [15]. Colnik, M., Primozic, M., Habulin, M., “Use of supercritical carbon dioxide for proteins and alcohol dehydrogenase release from yeast Saccharomyces cerevisiae”, J. Supercrit. Fluids, Cilt 65, 11-17, 2012.
  • [16]. Ojha, K.S., Mason, T.J., O’Donnell, C.P., Kerry, J.P., Tiwari, B.K., “Ultrasound technology for food fermentation applications”, Ultrason. Sonochem., Cilt 34, 410-417, 2017.
  • [17]. Geciova, J., Bury, D., Jelen, P., “Methods for disruption of microbial cells for potential use in the dairy industry—a review”, Int. Dairy J., Cilt 12, 541-553, 2002.
  • [18]. Telefoncu, A., Zihnioğlu, F., Salnıkow, J. ve Kılınç, A., “Biyokimyada Temel ve Modern Teknikler”, Biyokimya Lisansüstü Yaz Okulu, İzmir, 2000.
  • [19]. Gogate, P.R., Pandit, A.B., “Application of Cavitational reactors for cell disruption for recovery of intracellular enzymes”, J. Chem. Technol. Biotechnol., Cilt 83,1083-1093, 2008.
  • [20]. Özbek, B., Ülgen, K.Ö., “ The stability of enzymes after sonication”, Process Biochem., Cilt 35, 1037-1043, 2000.
  • [21]. Lateef, A., Oloke, J.K., Prapulla, S.G., “The effect of ultrasonication on the release of fructosyltransferase from Aureobasidium pullulans CFR 77”, Enzyme Microb. Technol., Cilt 40, 1067-1070, 2007.
  • [22]. Cea, G., Wilson, L., Bolivar, J.M., Markovits, A., Illanes, A., “Effect of chain length on the activity of free and immobilized alcohol dehydrogenase towards aliphatic alcohols”, Enzyme Microb. Technol., Cilt 44, 135-138, 2009.
  • [23]. Hummel, W., Riebel, B., “Isolation and biochemical characterization of a new NADH oxidase from Lactobacillus brevis”, Biotechnol. Lett, Cilt 25, 51-54, 2003.
  • [24]. Li, Y.L., Xu, J.H., Xu, Y., “Deracemization of aryl secondary alcohols via enantioselective oxidation and stereoselective reduction with tandem whole-cell biocatalysts”, J. Mol. Catal. B: Enzym., Cilt 64, 48-52, 2010.
  • [25]. Kazıcı, H.Ç., Mehmetoğlu, Ü., “Use of the plant as biocatalysts for producing enantiomerically pure seconder alcohol”, Journal of the Faculty of Engineering and Architecture of Gazi University, Cilt 30, No 1, 49-56, 2015.
  • [26]. Temino, D.M.-R.D., Hartmeier, W., Ansorge-Schumacher, M.B., “Entrapment of the alcohol dehydrogenase from Lactobacillus kefir in polyvinyl alcohol for the synthesis of chiral hydrophobic alcohols in organic solvents”, Enzyme Microb. Technol., Cilt 36, 3-9, 2005.
  • [27]. Geueke, B., Riebel, B., Hummel, W., “NADH oxidase from Lactobacillus brevis: a new catalyst for the regeneration of NAD”, Enzyme Microb. Technol., Cilt 32, 205-211, 2003.
Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Gazi Üniversitesi , Fen Bilimleri Enstitüsü