Isırgan Lifi-Fındık Kabuğu Unu Dolgulu Hibrit Kompozitlerin Mekanik Davranışının İncelenmesi

Farklı hacim oranlarında ısırgan lifi ve sabit oranda fındıkkabuğu ununun takviyesi ile üretilen polimer kiriş numunelere, ısıl kür işleminden sonra, a/W=  0,2, 0,3 oranlarına sahip başlangıç çentikleri açıldı. Isırgan lifinin kompozit içerisindeki hacım oranları yüzde olarak 2,5, 5, 7,5 ve 10 dur. Fındıkkabuğu ununun tane büyüklüğü 0-50µ ve kompozit içerisindeki hacim oranıda tüm numunelerde yüzde 15’dir. Tek kenardan çentik açılmış kompozit numunelerin mode I kırılma davranışları kompakt çekme ve mekanik davranışlar üç nokta eğme testi, darbe testi uygulanarak ortaya konuldu. Çatlak açılma miktarı yüksek hızlı kamera kaydedicisi ile tesbit edildi. Eğilme testi ile eğilme modülü ve eğilme gerilmeleri belirlendi. Darbe testinden elde edilen kırık yüzeylerin sem görüntüleri ile morfolojik yapı ortaya konuldu. İlave edilen fındıkkabuğu ununun eğilme gerilmesi, kırılma dayanımı ve darbe direncini azaltırken, eğilme modülünü artırdığı gözlemlenmiştir.

Investigation of Mechanical Behavior of Nettle Filled Hybrid Composites of Nettle Fiber-Hazelnut Shell

Polymer beam specimens produced with reinforcement of nettle fiber and fixed nut hazelnut flour at different volume ratios were opened initial notches with a / W = 0.2, 0.3 ratios after thermal curing. The volume percentage of nettle fiber in the composite is 2.5, 5, 7.5 and 10 percent. The grain size of hazelnut shell flour is 0-50μ and the volume ratio in the composite is 15% in all samples. Mode I fracture behaviors of compacted specimens from single sides,  compact tensile and mechanical behavior were determined by three point bending test and impact test. The amount of crack opening was determined by the high-speed camera recorder. The bending test determined bending modulus and bending stresses. The morphological structure of the fractured surfaces obtained from the impulse test was revealed by sem views. It has been observed that the added hazelnut flour enhances the flexural modulus while reducing bending stress, fracture strength and impact resistance

___

  • [1] Donnell, O. A., Dweib, M,A. ve Wool R.P,. Natural Fibre Composites with Plant oil-Based Resin, Composite Science and Tecnologie, 64,1135.2004
  • [2] Marsh G., Next Step for Automotive Materials, Material Today, 6, 36.2003
  • [3] Stevens E.S., Green Plastics, Princeton University Press, Princeton 2002
  • [4] Bledzki, A.K. ve Gassan, J., Composites Reinforced with Cellulose-Based Fibres, Progress in Polymer Science, 2, 24, 221-274.1999
  • [5] Mohanty, A.K., Misra M. ve Drzal, L.T., Surface Modifications of Natural Fibres and Performance of the Resulting Biocomposites: an Overview. Composites Interfaces, 5, 8,313-343.2001
  • [6] Li, Y., Mai, Y.W. ve Ye, L.,Sisal Fibre and its Composites: a Review of Recent Developments, Composites Science and Technology,11, 60, 2037–2055.2000
  • [7] Mishra, S., Tripathy, S.S., Misra, M., Mohanty, A.K. ve Nayak, S.K., Novel eco-friendly biocomposites: biofibre reinforced biodegradable polyester amide composites – fabrication and properties evaluation, Journal of Reinforced Plastics Composites, 21, 55-70. 2002
  • [8] Mwaikambo, L.Y. ve Ansell, M,P., Chemical modification of hemp, sisal, jute, and kapok fibres by alkalisation, Journal of Applied Polymer Science, 12, 84, 2222-2234.2002
  • [9] Hepworth, D.G., Hobson, R.N., Bruce, D.M. ve Farrent, J.W., The use of unretted hemp fibre in composite manufacture. Composites: Part A, 11, 31, 1279-1283.2000
  • [10] Van de Velde K. ve Kiekens, P., Thermoplastic pultrusion of natural fibre reinforced composites, Composite structures, 2, 54, 355-360. 2001
  • [11] Zafeiropoulosa, N.E., Williams, D.R., Bailliea, C.A. ve Matthewsa, F.L., Engineering and characterization of the interface in flax fibre/ polypropylene composite materials. Part I. Development and investigation of surface treatments, Composites, Part A, 33,1083-1093. 2002
  • [12] Mohanty, A.K., Drzal, L.T. ve Misra, M., Engineered natural fibre reinforced polypropylene composites, influence of surface modifications and novel powder impregnation processing. Journal of Adhesive Science and Technology, 8, 16, 999-1015. 2002
  • [13] Devi, L., Bhagawan, S. ve Thomas, S., Mechanical properties of pineapple leaf fibre reinforced polyester composites. Journal of Applied Polymer Science, 9, 64, 1739-1748. 1997
  • [14] Low, I.M., Che, Z.Y., Latella, B.A. ve Sim, A.K., Mechanical and Fracture Properties of Bamboo, Key Engineering Material, 3, 12, 15-20 .2006
  • [15] Huang, G., Nettle (Urtica cannabina L) fibre, properties and spinning practice, Journal of the Textile Institute, , 1, 96, 11-15. 2005
  • [16] Xiaofei, Z. ve Xiaozh, S, H., Low temperature fracture toughness of PMMA and crack-tipconditions under flat-tipped cylindrical indenter, Polymer Testing, 38, 57-63. 2014 [17] Marshall, G. P., Coutts, L. H, ve Wıllıams, J. G., Temperature effects in the fracture of Pmma, Journal of Materıals Scıence , 9, 1409-1419.1974
  • [18] Roe, P. J. ve Ansell, J. M. P ., Jute-reinforced polyester composites,journal of materials science, 11, 20, 4015-4020.1985
  • [19] Low, I.M, McGrath, M. D., Lawrence, P., Schmidt, J., Lane, B. A. ve Latella, K. S. S., Mechanical and fracture properties of cellulose-fibre-reinforced epoxy laminates, Composites, Part A, 38, 963–974. 2007
  • [20] Jonoobi, M. J., Harun, P., Tahir, L. ve Zaini, S. S. A, M., Characteristics of nanofibers extracted from kenaf core, Bio- Resources, 4, 5, 2556–2566. 2010
  • [21] Roncero, M.B., Torres, A. L., Colom, J. F., ve Vidal T., The effect of xylanase on lignocellulosic components during the bleaching of wood pulps, Bioresource Technology, 1, 96, 21–30. 2005
  • [22] Low, I. M., Schmidt P. ve Lane J., Synthesis and properties of cellulose- fibre/epoxy laminates, Journal of Material Science, Letter,14,170-172. 1995
  • [23] Malkapuram, R., Kumar, V. ve Negi, Y. S., Recent development in natural fibre reinforced polypropylene composites, Journal of Reınforced Plastıcs And Composıtes, 10, 28, 1169-1189. 2009
  • [24] Gümüskaya, E., Usta, M. ve Kirei, H., The effects of various pulping conditions on crystalline structure of cellulose in cotton linters, Polymer Degradation and Stability, 81, 559–564. 2003
  • [25]. Ornaghi, H.L., Poletto, M.P., Zattera, A.J. ve Amico, S.C. Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers, Cellulose , 21, 177–188. 2014
  • [26].Bergfjord, C. ve Holst, B. A., Procedure for identifying textile bast fibres using microscopy: Flax, nettle/ramie, hemp and jute, Ultramicroscopy, 9, 110, 1192–1197. 2010
  • [27]. Herzog, A., Mikrophotographischer Atlas der technisch wichtigen Pflanzenfasern, (second ed.) Akademie-Verlag, Leipzig .1955
  • [28] Fidelis, M. E.A., Pereira, T.V.C. Gomes, O. F.M., Silva, F.A., Filho, R. D.T., The Effect of fiber morphology on thetensile strength of natural fibers, Journal of Material Research and Technology, 2, 2, 149–157. 2013