Vakum İnfüzyon Yöntemi ile Üretilen Parçalarda Jelkot Kullanımı ve Elyaf Laminasyonunun Mekanik Özelliklere Etkisi

Bu çalışmada vakum infüzyon yöntemi ile üretilen kompozit yapılarda yüzey katmanında kullanılan jelkotun mekanik özelliklere etkisi ve laminasyon planının nihai ürün üzerindeki etkileri araştırılmıştır. İki farklı laminasyon planı belirlenmiş ve bu iki farklı laminasyonun jelkotlu ve jelkotsuz plakaları üretilmiştir. Laminasyonlarda 300 gr/m2 keçe ve 300 gr/m2 bezayağı dokuma cam elyaf takviyeler kullanılmıştır. Çalışma kapsamında mekanik özellikleri araştırmak için çekme, üç nokta eğme ve barcol sertlik testleri yapılmıştır. Test sonuçlarına göre yapıda bez ayağı dokuma oranı artmasıyla birlikte eğme mukavemetinde %11,2-18,7 arasında; çekme mukavemetinde ise %11,7-16,6 arasında artış gözlemlenmiştir. Jelkot kullanımının mekanik özelliklere etkisinin büyük olduğu tespit edilmiştir. Jelkot kullanımı ile birlikte eğme mukavemetinde %24,3’e kadar düşüş gözlemlenirken; çekme mukavemetinde %17,8’e kadar düşüş gözlemlenmiştir. Bezayağı dokuma cam elyaf katmanının yüzeye daha yakın olduğu laminasyonlarda %5’e kadar daha yüksek barcol sertlik değerleri elde edilmiştir.

The Effect of Gelcoat Usage and Fiber Lamination on Mechanical Properties in Parts Produced by Vacuum Infusion Method

In this study, the effect of the gelcoat on the surface layer of the composite structures produced by vacuum infusion method on the mechanical properties and the effects of the lamination plan on the final product were investigated. Two different lamination plans were determined and gelcoat and non-gelcoat plates of these two different laminations were produced. In laminations, 300 gr/m2 discontinious mat and 300 gr/m² plain woven glass fiber reinforcements were used. Within the scope of the study, tensile, three-point bending and barcol hardness tests were carried out to investigate the mechanical properties. According to the test results, with the increase in the plain woven ratio in the structure, the bending strength is between 11.2-18.7%; an increase of 11.7-16.6% was observed in the tensile strength. It has been determined that the use of gelcoat has a great effect on the mechanical properties. With the use of gelcoat, a decrease of up to 24.3% was observed in the flexural strength; A decrease of up to 17.8% was observed in tensile strength. Up to 5% higher barcol hardness values were obtained in laminations where the plain woven glass fiber layer is closer to the surface.

___

  • [1] Tong, L., Mouritz, A., & Bannister, M.K. (2002). 3D Fibre Reinforced Polymer Composites.
  • [2] Bakis, C.E., Bank, L.C., Brown, V.L., Cosenza, E., Davalos, J.F., Lesko, J.J., Machida, A., Rizkalla, S.H., & Triantafillou, T.C. (2002). Fiber-Reinforced Polymer Composites for Construction—State-of-the-Art Review. Journal of Composites for Construction, 6, 73-87.
  • [3] Saheb, D. N., & Jog, J. P. 1999. Natural fiber polymer composites: a review. Advances in Polymer Technology: Journal of the Polymer Processing Institute, 18(4), 351-363
  • [4] Zheng, Y., Wang, W., Mosalam, K.M., & Zhong-feng, Z. (2018). Mechanical behavior of ultra-high toughness cementitious composite strengthened with Fiber Reinforced Polymer grid. Composite Structures, 184, 1-10. [5] Wilson, A. (2017). Vehicle weight is the key driver for automotive composites. Reinforced Plastics, 61, 100-102.
  • [6] Markets and Market, (2021), Composites Market by Fiber Type, Resin Type, Manufacturing Process, End-Use Industry and Region – Global Forecast to 2026, https://www.marketsandmarkets.com/PressReleases/composite.asp. [7] Sezgin, H., & Berkalp, O.B. (2017). The effect of hybridization on significant characteristics of jute/glass and jute/carbon-reinforced composites. Journal of Industrial Textiles, 47, 283 - 296. [8] Campbell, F.C. (2010). Structural Composite Materials.
  • [9] Lee, D.G. (2005). Axiomatic Design and Fabrication of Composite Structures: Applications in Robots, Machine Tools, and Automobiles.
  • [10] Shahzad, A. (2014). Impact and Fatigue Properties of Natural Fibre Composites. [11] Wallenberger, F.T., Macchesney, J.B., Naslain, R.R., & Ackler, H.D. (1999). Advanced inorganic fibers: Processes, structures, properties and applications.
  • [12] Lee, H., Jung, K.H., & Park, H. (2021). Study on Structural Design and Analysis of Composite Boat Hull Manufactured by Resin Infusion Simulation. Materials, 14. [13] Sakin, R. (2021). Layup Design Optimization for E-glass Woven Roving Fabric Reinforced Polyester Composite Laminates Produced by VARTM. Fibers and Polymers, 22, 509-527.
  • [14] Demircan, G., Ozen, M., & Kısa, M. (2020). Flexural Properties of Glass Fiber Reinforced Epoxy Composites at Different Strain Rates.
  • [15] Ertan, R., Kuş, A., & Durgun, I. (2019). ÜÇ BOYUTLU DOKUMA KUMAŞ TAKVİYELİ SANDVİÇ KOMPOZİTLERDE YÜZEYLERDEKİ ELYAF KATMAN SAYISININ EĞİLME DAVRANIŞINA ETKİSİ. Uludağ University Journal of The Faculty of Engineering, 24, 231-240.
  • [16] Çakir, M.C., & Berberoğlu, B. (2018). E-Cam Elyaf Takviyeli Epoksi Matrisli Kompozit Malzemelerin Elyaf Oranındaki Artış İle Mekanik Özelliklerindeki Değişimlerin İncelenmesi. El-Cezeri Fen ve Mühendislik Dergisi. [17] Sakin, R. (2017). RTM ile üretilen iki-yönlü cam-dokuma takviyeli kompozit levhalarda cam-keçe kullanımının mekanik anizotropi üzerine etkisi.
  • [18] Aydin, M.R., Acar, V., Yapici, F., Yildiz, K., Topcu, M.V., & Gündoğdu, Ö.L. (2018). Inter-ply Hibrit Kompozit Yapılarda Elyaf Diziliş Sıralamasının Mekanik ve Dinamik Özelliklere Etkisi. Journal of the Institute of Science and Technology, 8, 255-263.
  • [19] Infanta May Priya, I., & Senthil, R. (2021). Mechanical behavior of biaxial non-crimp glass fiber reinforced polymer composite. Materials Today: Proceedings.
  • [20] Nagaraja, K., Rajanna, S.K., Prakash, G.S., & Rajeshkumar, G. (2020). The Role of Stacking Order on Mechanical Properties of Glass/Carbon Reinforced Epoxy Hybrid Composites Prepared by Resin Infusion Technique. Materials Today: Proceedings, 22, 2446-2451.
  • [21] Oh, D.J., Jang, J., Jee, J., Kwon, Y., Im, S., & Han, Z. (2022). Effects of fabric combinations on the quality of glass fiber reinforced polymer hull structures. International Journal of Naval Architecture and Ocean Engineering.
  • [22] Yuhazri, M.Y., Amirhafizan, M.H., Nilson, G., Sihombing, H., Kamarul, A.M., & Nirmal, U. (2018). Effects of gelcoat thickness on mechanical properties of woven glass/polyester laminated composite. Journal of Mechanical Engineering and Sciences, 12, 3370-3386.
  • [23] Pomázi, Á., & Toldy, A. (2019). Multifunctional Gelcoats for Fiber Reinforced Composites. Coatings.
  • [24] Yenilmez, B., & Sozer, E.M. (2009). Compaction of e-glass fabric preforms in the Vacuum Infusion Process, A: Characterization experiments. Composites Part A-applied Science and Manufacturing, 40, 499-510.