Hiper Dubleks Paslanmaz Çelikler ve Kaynaklanabilirliği

Ferrit ve östenit fazını yüksek yoğunluklarda içerisinde bulunduran dubleks paslanmaz çelik sınıfının en gelişmiş ürünleri olan hiper dubleks paslanmaz çelikler (HDSS), maliyeti ve üretim süreci kompleksliği nedeniyle henüz oldukça niş ve kısıtlı kullanım alanına sahiptir. Ancak gelişen teknoloji ve çeşitlenen ihtiyaçlar dâhilinde kullanım alanlarının genişlemesi ve kullanımının yaygınlaşması beklenmektedir. Oldukça yeni olan bu ürün grubunun kullanımının yaygınlaşması işlenebilirlik ve kaynaklanabilirlik özelliklerine de bağlıdır. Füzyon kaynak yöntemleri, malzemenin termal geçmişini ve dolayısıyla dubleks paslanmaz çelik özelinde α/γ dengesini değiştirebilmektedir. Bu yüzden düşük ısı girdisi ile bazı ark kaynakları ile beraber sürtünme karıştırma kaynak yöntemi de hiper dubleks paslanmaz çeliklerin birleştirilmesinde uygulanan yöntemlerdir. Sunulan bu çalışmada hiper dubleks paslanmaz çelikler tanıtılarak üretim yöntemleri, kullanım alanları ve avantajlarına değinilmiş, uygun kaynak yöntemleri ve kaynaklanabilirliği hakkında bilgiler verilerek önceden yapılmış çalışmalar değerlendirilmiştir.

Hyper Duplex Stainless Steels and Their Weldability

Hyper duplex stainless steels (HDSS), which are the most advanced products of the duplex stainless steel class, containing ferrite and austenite phases in high densities, still have a very niche and limited application area due to their cost and production process complexity. However, it is expected that the application areas will expand and its field of use will become widespread within the scope of developing technology and diversifying needs. The widespread use of this fairly new product group also depends on its machinability and weldability properties. Fusion welding methods can change the thermal history of the material and therefore the α/γ balance in duplex stainless steel. Therefore, friction stir welding method along with some arc welding with low heat input are the methods applied for joining hyper duplex stainless steels. In this study, hyper duplex stainless steels are introduced, their production methods, fields of use, and advantages are mentioned, and previous studies are evaluated by giving information about suitable welding methods and weldability.

___

  • [1] Bain E.C., Griffiths W.E., “An Introduction to iron–chromium–nickel alloys”, Trans. Am. Inst. Min. Metall. Eng., 75: 166–211, (1927)
  • [2] Outokumpu. “History of duplex stainless steel” https://www.outokumpu.com/en/expertise/2020/duplex-90-years/history-of-duplex-stainless-steel
  • [3] Zhang Z., van der Mee V., Golding M. et al, “Pitting corrosion resistance properties of super duplex stainless steel weld metals and influencing factors”, Weld World, 63: 617–625, (2019). https://doi.org/10.1007/s40194-018-00684-y
  • [4] Robert N. Gunn. (1997). Duplex Stainless Steels, Woodhead Publishing. https://doi.org/10.1533/9781845698775.24
  • [5] Euro-Inox. "Innovative Facades in Stainless Steel", Euro-Inox Publication, Building series, Brussels, 19: 34, (2013).
  • [6] “Hong Kong-Zhuhai-Macau Bridge: the world's longest sea bridge". https://www.roadtraffic-technology.com/projects/hong-kong-zhuhai-macau-bridge/
  • [7] Zuili D., “The use of stainless steels in oil & gas industry”. Proceedings of the Duplex Stainless Steel Conference, Beaune, 576-582, (2010).
  • [8] Guocai C., Pasi K., “Super and hyper duplex stainless steels: structures, properties and applications”, Procedia Structural Integrity, 2: 1755-1762, (2016) https://doi.org/10.1016/j.prostr.2016.06.221.
  • [9] Lula R. A., “Duplex Stainless Steels”, KCI publishing, Zutphen, (1983).
  • [10] Stankiewicz M., Slazak B., “Resistance to pitting corrosion of duplex steel and its welded joints.” The Importance of Steel Selection, Modeling Methods and Experimental Tests in the Design of Building Structures, Maslak, M., Ed., Publishing House of the Cracow University of Technology, Cracow, (2020).
  • [11] Magnani M. & Terada M., Lino A., Tallo V., Bertoni da Fonseca E., Santos T. F., Ramirez A., “Microstructural and Electrochemical Characterization of Friction Stir Welded Duplex Stainless Steels”. International Journal of Electrochemical Science. 9: 2966-2977, (2014).
  • [12] Tan H., Jiang Y.M., Deng B., Sun T., Xu J.L., Li J., “Effect of annealing temperature on the pitting corrosion resistance of super duplex stainless steel UNS S32750”, Mater. Charact., 60: 1049-1054, (2009). https://doi.org/10.1016/j.matchar.2009.04.009
  • [13] Martins M., Casteletti L.C., “Microstructural characteristics and corrosion behavior of a super duplex stainless steel casting”, Mater. Charact., 60: 150-155, (2009). https://doi.org/10.1016/j.matchar.2008.12.010 [14] Wroński S., Tarasiuk J., Bacroix B., Baczmański A., Braham C., “Investigation of plastic deformation heterogeneities in duplex steel by EBSD” Mater. Charact., 73: 52-60, (2012). https://doi.org/10.1016/j.matchar.2012.07.016
  • [15] Hong J.F., Han D., Tan H., Li J., Jiang Y.M., “Evaluation of aged duplex stainless steel UNS S32750 susceptibility to intergranular corrosion by optimized double loop electrochemical potentiokinetic reactivation method” Corros. Sci., 68: 249-255, (2013). https://doi.org/10.1016/j.corsci.2012.11.024 [16] Liang X.Z., Dodge M.F., Liang W., Dong H.B., “Precipitation of chromium nitride nano-rods on lamellar carbides along austenite-ferrite boundaries in super duplex stainless steel” Scr. Mater., 127: 45-48, (2017). https://doi.org/10.1016/j.scriptamat.2016.09.004
  • [17] Jeon S.H., Park I.J., Kim H.J., Kim S.T., Lee Y.K., Park Y.S., “Effect of Cu on the precipitation of deleterious phases and the mechanical properties of 27Cr­7Ni hyper duplex stainless steels” Mater. Trans., 55: 971-977, (2014). http://doi.org/10.2320/matertrans.M2013471
  • [18] Villanueva D.M.E., Junior F.C.P., Plaut R.L., Padilha A.F., “Comparative study on sigma phase precipitation of three types of stainless steels: austenitic, superferritic and duplex”, Mater. Sci. Technol., 22: 1098-1104, (2006). https://doi.org/10.1179/174328406X109230
  • [19] Núria L.I., Héctor L.L., Isabel L.J., Maria V.B., “Identification of sigma and chi phases in duplex stainless steels”, Mater. Charact., 112: 20-29, (2016). https://doi.org/10.1016/j.matchar.2015.12.004
  • [20] Stenvall P., and Holmquist M., “New Hyper Duplex Stainless Steel Welding Material For Improved Weld Performance”. Corrosion 2007, Nashville, (2007).
  • [21] Kivisäkk U., Eidhagen J., & Juhlin J.J. “Uns S33207 A New Hyper Duplex Stainless Steel For Umbilicals”, Corrosion 2009, Atlanta, (2009).
  • [22] Guocai C. , Kivisäkk U., Tokaruk J., Eidhagen J. “Hyper duplex stainless steel for deep subsea applications”, Stainless Steel World, 3: 27-33, (2009).
  • [23] Aker Solutions, “Subsea Power Distribution Systems”, https://www.akersolutions.com/what-we-do/subsea-production-systems-and-lifecycle-services/subsea-power-distribution-systems/
  • [24] Chai G., Kangas P., “New hyper duplex stainless steels” Proc. Duplex stainless steels, 1043-1054, (2011).
  • [25] Elhoud A.M., Renton N.C., Deans W.F., “The effect of manufacturing variables on the corrosion resistance of a super duplex stainless steel”, Int. J. Adv. Manuf. Technol. 52: 451–461, (2011), https://doi.org/10.1007/s00170-010-2756-6.
  • [26] C.A. Olsson, “The influence of nitrogen and molybdenum on passive films formed on the austenoferritic stainless steel 2205 studied by AES and XPS”, Corr. Sci., 1995, 37(3): 467-479.
  • [27] Liou H.Y., Tsai W.T., Pan Y.T. et al., “Effects of alloying elements on the mechanical properties and corrosion behaviors of 2205 duplex stainless steels”, J. of Materi. Eng. and Perform., 10: 231–241, (2001), https://doi.org/10.1361/105994901770345268.
  • [28] Maslak M., Stankiewicz M., Slazak B., “Duplex Steels Used in Building Structures and Their Resistance to Chloride Corrosion”, Materials 14: 5666, (2021), https://doi.org/10.3390/ma14195666.
  • [29] Kaçar R., Ertek Emre H., Sinoplu Ö., “Dubleks Paslanmaz Çeliklerin Statik Yaşlanma Davranışları”, 6th International Advanced Technologies Symposium (IATS’11), Elazığ, 142-146, (2011).
  • [30] Binbin Z., Huabing L., Shucai Z., Zhouhua J., Yue L., Hao F., Hongchun Z., “Effect of nitrogen on precipitation behavior of hyper duplex stainless steel S32707”, Materials Characterization, 175: 111096 (2021). https://doi.org/10.1016/j.matchar.2021.111096.
  • [31] Altuntaş G., Altuntaş O., Öztürk M.K., Bostan B., “Metallurgical and Crystallographic Analysis of Different Amounts of Deformation Applied to Hadfield Steel”, Inter. Metalcast., (2022). https://doi.org/10.1007/s40962-022-00860-3
  • [32] Banas J., Mazurkiewicz A., “The effect of copper on passivity and corrosion behaviour of ferritic and ferritic–austenitic stainless steels”, Mater Sci Eng A., 277: 183-191, (2000). https://doi.org/10.1016/S0921-5093(99)00530-4
  • [33] Ressel G., Gsellmann M., Brandl D., Landefeld A., Keplinger A., Zhang Z.L., Maier-Kiener V., Schnitzer R., “Copper and its effects on microstructure and correlated tensile properties of super duplex stainless steels”, Mater Sci Eng A., 821: 141544, (2021). https://doi.org/10.1016/j.msea.2021.141544.
  • [34] De Lima H.M.L.F., Tavares S.S.M., Martins M., Araújo W.S., “The effect of copper addition on the corrosion resistance of cast duplex stainless steel”, Journal of Materials Research and Technology, 8(2): 2107-2119, (2019). https://doi.org/10.1016/j.jmrt.2019.01.018.
  • [35] Haugan E.B., Næss M., Rodriguez C.T., Johnsen R., Iannuzzi M., “Effect of Tungsten on the Pitting and Crevice Corrosion Resistance of Type 25Cr Super Duplex Stainless Steels”, Corrosion, 73(1): 53–67 (2017). https://doi.org/10.5006/2185.
  • [36] Torres C., Iannuzzi M., Johnsen R., “Use of the Critical Acidification Model to Estimate the Influence of W in the Localized Corrosion Resistance of 25Cr Super Duplex Stainless Steels”, Metals, 10(10): 1364, (2020). https://doi.org/10.3390/met10101364.
  • [37] Lee B.H. et al., “The effect of silicon content on the pitting corrosion of duplex stainless steel weldment”, Archives of materials science and engineering, 67: 60-69, (2014).
  • [38] Altuntaş O., Güral A., Tekeli S. “Microstructure engineering for superior wear and impact toughness strength of hypereutectoid powder metallurgy steel”, Powder Metallurgy, 65:2, 101-111, (2022). https://doi.org/10.1080/00325899.2021.1954280
  • [39] Knyazeva M., Pohl M., “Duplex Steels. Part II: Carbides and Nitrides”, Metallogr. Microstruct. Anal., 2: 343–351, (2013). https://doi.org/10.1007/s13632-013-0088-2.
  • [40] High H., “Hyper-duplex stainless steels” https://www.materials.sandvik/contentassets/2fb9a78a95e54cfba303361e04151a68/sav0049_whitepaper_hyperduplex_150606.pdf.
  • [41] Sato Y.S., Kokawa H., Kuwana T., “Effect of nitrogen on σ transformation in duplex stainless steel weld metal”, Science and Technology of Welding and Joining, 4(1): 41-49, (1999). https://doi.org/10.1179/stw.1999.4.1.41.
  • [42] Ghosh P.K., “Introduction to Gas Metal Arc Welding Process, Pulse Current Gas Metal Arc Welding: Characteristics, Control and Applications”, Springer, Singapore, (2017).
  • [43] Korkmaz E., Meran C., “Mechanical properties and microstructure characterization of GTAW of micro-alloyed hot rolled ferritic XPF800 steel”, Engineering Science and Technology, an International Journal, 24(2): 503-513, (2021). https://doi.org/10.1016/j.jestch.2020.04.006.
  • [44] Kumar S., Nath S. K., “Studies on Microstructure and Mechanical Properties of Simulated Heat Affected Zone in a Micro Alloyed Steel”, International Journal of Materials and Metallurgical Engineering, 8(9): 1056 – 1059, (2014). https://doi.org/10.5281/zenodo.1112153.
  • [45] Mathers G., “Duplex Stainless Steel Part 1”, https://www.twi-global.com/technical-knowledge/job-knowledge/duplex-stainless-steel-part-1-105.
  • [46] ESAB, “Exaton 27.7.5.L GMAW Wire FactSheet”, https://www.esabna.com/us/en/products/filler-metals/specialty-alloys/mig-mag-wires-gmaw/stainless-steel-wires/exaton-27-7-5-l.cfm.
  • [47] Sandvik, “27.9.5.L Welding Wire Factsheet”, https://www.acerostitanium.cl/docs/sandvik-EN-N-Z-27-9-5-N-L.pdf.
  • [48] Sözeri M., Fındık T., Özdemir U., “Düşük Alaşımlı Çeliklere Kaynakla Kaplama Yapılarak Balistik Özellik Kazandırılması”, Gazi Mühendislik Bilimleri Dergisi, 8(2): 168-177, (2022).
  • [49] Karlsson L., “Welding duplex stainless steels—a review of current recommendations”, Weld World, 56(3): 65–76, (2012). https://doi.org/10.1007/BF03321351
  • [50] Kim H.-J., Jeon S.-H., Kim S.-T., Park Y.-S., “Influence of the shielding gas composition on the passive film and erosion corrosion of tube-to-tube sheet welds of hyper duplex stainless steel”, Corrosion Science, 91: 140-150, (2015). https://doi.org/10.1016/j.corsci.2014.11.014.
  • [51] Jang S.-H., Kim S.-T., Lee I.-S., Park Y.-S., “Effect of Shielding Gas Composition on Phase Transformation and Mechanism of Pitting Corrosion of Hyper Duplex Stainless Steel Welds”, Materials Transactions, 52(6): 1228-1236, (2011). https://doi.org/10.2320/matertrans.M2010414.
  • [52] Pimenta A.R., Diniz M.G., Perez G., Naranjo I.G.S., “Nitrogen addition to the shielding gas for welding hyper-duplex stainless steel”, Soldagem & Inspeção, 25:e2512, (2019). https://doi.org/10.1590/0104-9224/SI25.12
  • [53] Acuna A., Ramirez A., Menon R., Björnstedt P., Carvalho L., "Developing a Weld Overlay Specification for Hyper Duplex Stainless Steel." Proceedings of the ASME 2021 Pressure Vessels & Piping Conference Volume 4: Materials and Fabrication, Virtual, (2021). https://doi.org/10.1115/PVP2021-62042
  • [54] Hosseini V. A., Thuvander M., Lindgren K., Oliver J., Folkeson N., Gonzalez D., Karlsson L., “Fe and Cr phase separation in super and hyper duplex stainless steel plates and welds after very short aging times”, Materials & Design, 210: 110055, (2021). https://doi.org/10.1016/j.matdes.2021.110055.
  • [55] Kim D.-H., Kim N.-H., Lee H.-W., “Corrosion and cracking characteristics upon aging of hyper duplex stainless steel weld”, Materials Science and Technology, 36(7): 783-792, (2020). https://doi.org/10.1080/02670836.2020.1743575.
  • [56] Kim N.-h., Gil W., Lim H.-d., Choi C.-h., Lee H.-w., “Variation of Mechanical Properties and Corrosion Properties with Mo Contents of Hyper Duplex Stainless-Steel Welds”, Metals and Materials International, 25(1): 193-206, (2019). https://doi.org/10.1007/s12540-018-0166-8.
  • [57] Li J., Liu X., Li G., Han P., Liang W., “Characterization of the Microstructure, Mechanical Properties, and Corrosion Resistance of a Friction-Stir-Welded Joint of Hyper Duplex Stainless Steel”, Metals, 7(4):138, (2017). https://doi.org/10.3390/met7040138.
  • [58] Chen W., Wang J., Li J., Zheng Y., Li H., Liu Y., Han P., “Effect of the Rotation Speed during Friction Stir Welding on the Microstructure and Corrosion Resistance of SAF 2707 Hyper Duplex Stainless Steel”, Steel Research International, 89(4): 1700425, (2018). https://doi.org/10.1002/srin.201700425.
  • [59] Mohan D.G., Tomków J., Karganroudi S.S., “Laser Welding of UNS S33207 Hyper-Duplex Stainless Steel to 6061 Aluminum Alloy Using High Entropy Alloy as a Filler Material”, Appl. Sci., 12: 2849, (2022). https://doi.org/10.3390/app12062849.
  • [60] Sandvik. "SAF 2707 HD™ tube and pipe, seamless", Sandvik Datasheet, (2021).
  • [61] Sandvik. "SAF 3207 HD™ tube and pipe, seamless", Sandvik Datasheet, (2021).
Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Gazi Üniversitesi , Fen Bilimleri Enstitüsü