Ergonomik Bilgisayar Kullanımına Yönlendiren Bir Asistan Sistem Tasarımı

Günümüzde hemen her yaş gurubundan insan bilgisayarların ve bilgisayar destekli sistemlerin kullanıcısı konumundadır. Hayatımızı kolaylaştıran teknoloji bir yandan da sağlığımızı tehdit edebilmektedir. Son yıllarda artan bel-boyun ağrıları ve fıtık, eklemlerde kireçlenme, görme bozuklukları, obezite gibi rahatsızlıkların başlıca sebeplerinden bir tanesi de yanlış bilgisayar kullanımıdır.  Bilgisayarların yaygın kullanımı da bu bulguları arttırmaktadır. Bu çalışmanın amacı bilgisayar kullanıcısı bireyleri ergonomik açıdan daha dikkatli bilgisayar kullanmaya yönlendirmektir. Bu amaçla geliştirilen kullanıcı ile etkileşimli sistem, bireylerin bilgisayar kullandıkları süre boyunca ekrana olan uzaklıklarını, ekrana bakış açılarını ve ekrana bakma süresini takip ederek gerekli durumlarda sesli ya da yazılı ikaz vermektedir. Bu sistemin, bireyleri ergonomik bilgisayar kullanımına teşvik ederek bilgisayar kullanım sıklığından kaynaklı sağlık problemlerini azaltacağı düşünülmektedir. 

Designing an Assistant System Encouraging Ergonomic Computer Usage

Today, people of almost every age group are users of computers and computer aided systems. Technology makes our life easier, but it can also threaten our health. In recent years, one of the main causes of the proliferation of diseases such as lower back pain, neck pain or hernia, Arthritis, visual disturbances and obesity is wrong computer usage. The widespread use of computers also increases these findings. The purpose of this study is to direct computer users to use computers more carefully in terms of ergonomics. The user-interactive system developed for this purpose controls distance of the user to the screen and calculates the look angle and the time spent looking at the screen and provides audio or text format warning when necessary. It is thought that this system will reduce the health problems caused by the frequency of computer usage by encouraging individuals to use computers ergonomically.  

___

  • [1] El-Iaithy, R.A., Jidong, H., Yeh, M., “Study on the Use of Microsoft Kinect for Robotics Applications.”, In Proceedings of the Position Location and Navigation Symposium (PLANS), Myrtle Beach, SC, USA, pp. 1280–1288, 23–26 April 2012.
  • [2] Oliver, A., Kong, S., Wünsche, B., MacDonald, B., “Using the Kinect as a Navigation Sensor for Mobile Robotics.”, In Proceedings of the 27th Conference on Image and Vision Computing (IVCNZ’12), Dunedin, New Zealand, pp. 505–514, 26–28 November 2012.
  • [3] Suarez, J., Murphy, R.R., “Using the Kinect for Search and Rescue Robotics.”, In Proceedings of the IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), College Station, TX, USA, pp. 1–2, 5–8 November 2012.
  • [4] Guevara, D.C., Vietri, G., Prabakar, M., Jong-Hoon K., “Robotic Exoskeleton System Controlled by Kinect and Haptic Sensors for Physical Therapy.”, In Proceedings of the 29th Southern Biomedical Engineering Conference (SBEC), Miami, FL, USA, pp. 71–72, 3–5 May 2013.
  • [5] Kastaniotis, D., Economou, G., Fotopoulos, S., Kartsakalis, G., Papathanasopoulos, P., “Using Kinect for Assessing the State of Multiple Sclerosis Patients.”, In Proceedings of the 2014 EAI 4th International Conference on Wireless Mobile Communication and Healthcare (Mobihealth), Athens, Greece, pp. 164–167, 3–5 November 2014.
  • [6] Bravo, C. B., Ojeda-Castelo, J. J., & Piedra-Fernandez, J. A., “Art activities with Kinect to Students with Cognitive Disabilities: Improving all Motor Skills.”, Procedia-Social and Behavioral Sciences, 237, pp. 1148-1151, 2017.
  • [7] Ulrich, D., Farra, S., Smith, S., & Hodgson, E., “The student experience using virtual reality simulation to teach decontamination.”, Clinical Simulation in Nursing, 10(11), pp. 546-553, 2014.
  • [8] Chang, Y. J., Chen, S. F., & Huang, J. D., “A Kinect-based system for physical rehabilitation: A pilot study for young adults with motor disabilities.”, Research in developmental disabilities, 32(6), pp. 2566-2570, 2011.
  • [9] Pedraza-Hueso, M., Martín-Calzón, S., Díaz-Pernas, F. J., & Martínez-Zarzuela, M., “Rehabilitation using kinect-based games and virtual reality.”, Procedia Computer Science, 75, pp. 161-168, 2015.
  • [10] Li, B. Y., Xue, M., Mian, A., Liu, W., & Krishna, A., “Robust RGB-D face recognition using Kinect sensor.”, Neurocomputing, 214, pp. 93-108, 2016.
  • [11] Khoshelham, K., “Accuracy Analysis of Kinect Depth Data.”, In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Calgary, Alberta, CA, pp. 133–138, 29–31 August 2011.
  • [12] Plantard, P., Muller, A., Pontonnier, C., Dumont, G., Shum, H. P., & Multon, F., “Inverse dynamics based on occlusion-resistant Kinect data: Is it usable for ergonomics?.”, International Journal of Industrial Ergonomics, 61, pp. 71-80, 2017.
  • [13] P. A. Viola, M. J. Jones, "Rapid object detection using a boosted cascade of simple features", IEEE Computer Society Conference on Computer Vision and Pattern Recognition CVPR 2001, 511–518, 2001.
  • [14] Office Ergonomics Advisory Committee, “Office Ergonomics, practical solutions for a safer workplace”, WISHA Services Division, Washington State Department of Labor and Industries, 2002.
  • [15] Baslo, M., “Ofis Ergonomisi-Sırt ve Boyun Ağrılarını Önlemek İçin Ofis Ortamını Düzenlemek”, Baş, Boyun, Bel Ağrıları Sempozyum Dizisi, (30), 155-165, 2002.
  • [16] Kroemer, A. D., & Kroemer, K. H., “Office Ergonomics: Ease and Efficiency at Work.”, CRC Press., 2016.
  • [17] Pagliari, D., & Pinto, L., “Calibration of kinect for xbox one and comparison between the two generations of microsoft sensors.”, Sensors, 15(11), pp. 27569-27589, 2015.