Polimerik Yara Örtülerinde 3B Baskı Teknolojisi Uygulamaları

Polimerik yara örtüleri çeşitli polimerlerin bir arada kullanılabilmesi, ucuz olmaları ve yara iyileşmesini desteklemesi sebebiyle yara tedavisinde sıklıkla tercih edilmektedir. Ancak bu yara örtülerinin düzensiz şekilli yaralarda kullanılamaması yara tedavisinde karşılaşılan önemli bir sorundur. Son zamanlarda 3B yazıcılar kullanılarak kişiye özel üretilen yara örtüleri bu sorunu ortadan kaldırmış ve araştırmacılar için oldukça ilgi çekici bir konu haline gelmiştir. Kişiselleştirilen bu yara örtüleri hastaya özel tedavi yöntemleri sunarak bu alandaki sınırlamaları ortadan kaldırmıştır. Bu çalışmada, çeşitli biyouyumlu polimerler kullanılarak 3B yazıcılar ile üretilen polimerik yara örtüleri ile ilgili literatür çalışmaları incelenmiş ve bu yara örtülerinin yara iyileşmesindeki etkilerine odaklanılmıştır.

3D Printing Technology Applications in Polymeric Dressings

Polymeric wound dressings are frequently preferred in wound treatment because they can be used together with various polymers, are inexpensive, and support wound healing. Nevertheless, the inability to use these dressings on irregularly shaped wounds is a siginificant problem in wound treatment. Recently, personalized wound dressings dressings using 3D printers have overcome this challenge and have become a very interesting subject for researchers. These personalized wound dressings have removed the limitations in this area by offering patient-specific treatment methods. In this study, literature studies on polymeric wound dressings produced with 3D printers using various biocompatible polymers were examined and focused on the effects of these dressings on wound healing.

___

  • [1] R. Portela, C. R. Leal, P. L. Almeida, and R. G. Sobral, “Bacterial cellulose: a versatile biopolymer for wound dressing applications,” Microb. Biotechnol., vol. 12, no. 4, pp. 586–610, Jul. 2019, doi: https://doi.org/10.1111/1751-7915.13392.
  • [2] A. Subramanian, U. M. Krishnan, and S. Sethuraman, “14 - Skin tissue regeneration,” in Woodhead Publishing Series in Biomaterials, L. A. Bosworth and S. B. T.-E. for T. R. Downes, Eds. Woodhead Publishing, 2011, pp. 298–316.
  • [3] E. M. Tottoli, R. Dorati, I. Genta, E. Chiesa, S. Pisani, and B. Conti, “Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration,” Pharmaceutics , vol. 12, no. 8. 2020, doi: 10.3390/pharmaceutics12080735.
  • [4] S. Eming, P. Martin, and M. Tomic-Canic, “Wound repair and regeneration: Mechanisms, signaling, and translation,” Sci. Transl. Med., vol. 6, pp. 265sr6-265sr6, Dec. 2014, doi: 10.1126/scitranslmed.3009337.
  • [5] M. E. Okur, I. D. Karantas, Z. Şenyiğit, N. Üstündağ Okur, and P. I. Siafaka, “Recent trends on wound management: New therapeutic choices based on polymeric carriers,” Asian Journal of Pharmaceutical Sciences, vol. 15, no. 6. Shenyang Pharmaceutical University, pp. 661–684, Nov. 01, 2020, doi: 10.1016/j.ajps.2019.11.008.
  • [6] V. Jones, J. E. Grey, and K. G. Harding, “Wound dressings,” BMJ, vol. 332, no. 7544, pp. 777 LP – 780, Mar. 2006, doi: 10.1136/bmj.332.7544.777.
  • [7] Z. Feng et al., “Bioinspired Nanofibrous Glycopeptide Hydrogel Dressing for Accelerating Wound Healing: A Cytokine-Free, M2-Type Macrophage Polarization Approach,” Adv. Funct. Mater., vol. 30, no. 52, p. 2006454, Dec. 2020, doi: https://doi.org/10.1002/adfm.202006454.
  • [8] K. A. Rieger, N. P. Birch, and J. D. Schiffman, “Designing electrospun nanofiber mats to promote wound healing – a review,” J. Mater. Chem. B, vol. 1, no. 36, pp. 4531–4541, 2013, doi: 10.1039/C3TB20795A.
  • [9] H. F. Oldenkamp, J. E. Vela Ramirez, and N. A. Peppas, “Re-evaluating the importance of carbohydrates as regenerative biomaterials,” Regen. Biomater., vol. 6, no. 1, pp. 1–12, Feb. 2019, doi: 10.1093/rb/rby023.
  • [10] J. R. Clegg, A. M. Wagner, S. R. Shin, S. Hassan, A. Khademhosseini, and N. A. Peppas, “Modular fabrication of intelligent material-tissue interfaces for bioinspired and biomimetic devices,” Prog. Mater. Sci., vol. 106, p. 100589, 2019, doi: https://doi.org/10.1016/j.pmatsci.2019.100589.
  • [11] M. Alizadehgiashi et al., “Multifunctional 3D-Printed Wound Dressings,” ACS Nano, vol. 15, no. 7, pp. 12375–12387, 2021, doi: 10.1021/acsnano.1c04499.
  • [12] J. Long, A. E. Etxeberria, A. V. Nand, C. R. Bunt, S. Ray, and A. Seyfoddin, “A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery,” Mater. Sci. Eng. C, vol. 104, no. June, p. 109873, 2019, doi: 10.1016/j.msec.2019.109873.
  • [13] Z. Al-Dulimi, M. Wallis, D. K. Tan, M. Maniruzzaman, and A. Nokhodchi, “3D printing technology as innovative solutions for biomedical applications,” Drug Discovery Today, vol. 26, no. 2. Elsevier Ltd, pp. 360–383, Feb. 01, 2021, doi: 10.1016/j.drudis.2020.11.013.
  • [14] M. Gizaw, J. Thompson, A. Faglie, S.-Y. Lee, P. Neuenschwander, and S.-F. Chou, “Electrospun Fibers as a Dressing Material for Drug and Biological Agent Delivery in Wound Healing Applications,” Bioengineering , vol. 5, no. 1. 2018, doi: 10.3390/bioengineering5010009.
  • [15] G. Altay, P. ve Başal, “Yara örtüleri,” Tekst. Teknol. Elektron. Derg., vol. 4, pp. 109–121, 2010.
  • [16] E. Merlin-Manton, “Wound care: Selecting the right dressings,” Pract. Nurse, vol. 47, Aug. 2017.
  • [17] A. Gupta, M. Kowalczuk, W. Heaselgrave, S. T. Britland, C. Martin, and I. Radecka, “The production and application of hydrogels for wound management: A review,” Eur. Polym. J., vol. 111, pp. 134–151, 2019, doi: https://doi.org/10.1016/j.eurpolymj.2018.12.019.
  • [18] T. Nguyen, S. Mobashery, and M. Chang, “Roles of Matrix Metalloproteinases in Cutaneous Wound Healing,” 2016.
  • [19] A. J. Singer and R. A. F. Clark, “Cutaneous Wound Healing,” N. Engl. J. Med., vol. 341, no. 10, pp. 738–746, Sep. 1999, doi: 10.1056/NEJM199909023411006.
  • [20] G. Castellanos, Á. Bernabé-García, J. M. Moraleda, and F. J. Nicolás, “Amniotic membrane application for the healing of chronic wounds and ulcers,” Placenta, vol. 59, pp. 146–153, 2017, doi: https://doi.org/10.1016/j.placenta.2017.04.005.
  • [21] F. Strodtbeck, “Physiology of wound healing,” Newborn Infant Nurs. Rev., vol. 1, no. 1, pp. 43–52, 2001, doi: https://doi.org/10.1053/nbin.2001.23176.
  • [22] O. Akturk, A. Tezcaner, H. Bilgili, M. S. Deveci, M. R. Gecit, and D. Keskin, “Evaluation of sericin/collagen membranes as prospective wound dressing biomaterial,” J. Biosci. Bioeng., vol. 112, no. 3, pp. 279–288, 2011, doi: https://doi.org/10.1016/j.jbiosc.2011.05.014.
  • [23] P. Zahedi, I. Rezaeian, S.-O. Ranaei-Siadat, S.-H. Jafari, and P. Supaphol, “A review on wound dressings with an emphasis on electrospun nanofibrous polymeric bandages,” Polym. Adv. Technol., vol. 21, no. 2, pp. 77–95, Feb. 2010, doi: https://doi.org/10.1002/pat.1625.
  • [24] G. D. WINTER, “Formation of the Scab and the Rate of Epithelization of Superficial Wounds in the Skin of the Young Domestic Pig,” Nature, vol. 193, no. 4812, pp. 293–294, 1962, doi: 10.1038/193293a0.
  • [25] J. P. E. Junker, R. A. Kamel, E. J. Caterson, and E. Eriksson, “Clinical Impact Upon Wound Healing and Inflammation in Moist, Wet, and Dry Environments,” Adv. wound care, vol. 2, no. 7, pp. 348–356, Sep. 2013, doi: 10.1089/wound.2012.0412.
  • [26] E. Caló and V. V Khutoryanskiy, “Biomedical applications of hydrogels: A review of patents and commercial products,” Eur. Polym. J., vol. 65, pp. 252–267, 2015, doi: https://doi.org/10.1016/j.eurpolymj.2014.11.024.
  • [27] K. Vowden and P. Vowden, “Wound dressings: principles and practice,” Surg., vol. 35, no. 9, pp. 489–494, 2017, doi: https://doi.org/10.1016/j.mpsur.2017.06.005.
  • [28] W. Yeong, C. Chua, K. Leong, M. Chandrasekaran, and M. Lee, “Indirect fabrication of collagen scaffold based on inkjet printing technique,” Rapid Prototyp. J., vol. 12, no. 4, pp. 229–237, Jan. 2006, doi: 10.1108/13552540610682741.
  • [29] M. Rajabi, M. McConnell, J. Cabral, and M. A. Ali, “Chitosan hydrogels in 3D printing for biomedical applications,” Carbohydrate Polymers, vol. 260. Elsevier Ltd, May 15, 2021, doi: 10.1016/j.carbpol.2021.117768.
  • [30] L. Aydın and S. Küçük, “Design and Construction of Ankle Foot Orthosis By Means Of Three Dimensional Printers,” vol. 20, no. 1, pp. 1–8, 2017.
  • [31] H. Q et al., “Three-dimensional printing in surgery: A review of current surgical applications,” J. Surg. Res., vol. 199, Jul. 2015, doi: 10.1016/j.jss.2015.06.051.
  • [32] N. A. Elkasabgy, A. A. Mahmoud, and A. Maged, “3D printing: An appealing route for customized drug delivery systems,” International Journal of Pharmaceutics, vol. 588. Elsevier B.V., Oct. 15, 2020, doi: 10.1016/j.ijpharm.2020.119732.
  • [33] G. Janarthanan, H. N. Tran, E. Cha, C. Lee, D. Das, and I. Noh, “3D printable and injectable lactoferrin-loaded carboxymethyl cellulose-glycol chitosan hydrogels for tissue engineering applications,” Mater. Sci. Eng. C, vol. 113, Aug. 2020, doi: 10.1016/j.msec.2020.111008.
  • [34] Z. Gün Gök, K. Günay, M. Arslan, M. Yiğitoğlu, and İ. Vargel, “Coating of modified poly(ethylene terephthalate) fibers with sericin-capped silver nanoparticles for antimicrobial application,” Polym. Bull., 2019, doi: 10.1007/s00289-019-02820-0.
  • [35] S. Ahmed and S. Ikram, “Chitosan Based Scaffolds and Their Applications in Wound Healing,” Achiev. Life Sci., vol. 10, no. 1, pp. 27–37, 2016, doi: https://doi.org/10.1016/j.als.2016.04.001.
  • [36] A. M. Cardoso et al., “Chitosan hydrogels containing nanoencapsulated phenytoin for cutaneous use: Skin permeation/penetration and efficacy in wound healing,” Mater. Sci. Eng. C, vol. 96, pp. 205–217, 2019, doi: https://doi.org/10.1016/j.msec.2018.11.013.
  • [37] J. Wróblewska-Krepsztul, T. Rydzkowski, I. Michalska-Pożoga, and V. K. Thakur, “Biopolymers for Biomedical and Pharmaceutical Applications: Recent Advances and Overview of Alginate Electrospinning,” Nanomaterials, vol. 9, p. 404, Mar. 2019, doi: 10.3390/nano9030404.
  • [38] A. D. Sezer, “Biopolymers as Wound Healing Materials: Challenges and New Strategies,” E. C. E.-R. Pignatello, Ed. Rijeka: IntechOpen, 2011, p. Ch. 19.
  • [39] A. Eskandarinia et al., “A Novel Bilayer Wound Dressing Composed of a Dense Polyurethane/Propolis Membrane and a Biodegradable Polycaprolactone/Gelatin Nanofibrous Scaffold,” Sci. Rep., vol. 10, no. 1, p. 3063, 2020, doi: 10.1038/s41598-020-59931-2.
  • [40] J. Sharifi-Rad, M. Sharifi-Rad, S. M. Hoseini-Alfatemi, M. Iriti, M. Sharifi-Rad, and M. Sharifi-Rad, “Composition, Cytotoxic and Antimicrobial Activities of Satureja intermedia C.A.Mey Essential Oil,” International Journal of Molecular Sciences , vol. 16, no. 8. 2015, doi: 10.3390/ijms160817812.
  • [41] F. Hafezi, N. Scoutaris, D. Douroumis, and J. Boateng, “3D printed chitosan dressing crosslinked with genipin for potential healing of chronic wounds,” Int. J. Pharm., vol. 560, no. January, pp. 406–415, 2019, doi: 10.1016/j.ijpharm.2019.02.020.
  • [42] J. H. Teoh, S. M. Tay, J. Fuh, and C. H. Wang, “Fabricating scalable, personalized wound dressings with customizable drug loadings via 3D printing,” J. Control. Release, vol. 341, no. September 2021, pp. 80–94, 2022, doi: 10.1016/j.jconrel.2021.11.017.
  • [43] E. Ilhan et al., “Development of Satureja cuneifolia-loaded sodium alginate/polyethylene glycol scaffolds produced by 3D-printing technology as a diabetic wound dressing material,” Int. J. Biol. Macromol., vol. 161, pp. 1040–1054, Oct. 2020, doi: 10.1016/j.ijbiomac.2020.06.086.
  • [44] Z. Muwaffak, A. Goyanes, V. Clark, A. W. Basit, S. T. Hilton, and S. Gaisford, “Patient-specific 3D scanned and 3D printed antimicrobial polycaprolactone wound dressings,” Int. J. Pharm., vol. 527, no. 1–2, pp. 161–170, Jul. 2017, doi: 10.1016/j.ijpharm.2017.04.077.