Taşıt Hızına Bağlı Olarak Motor Titreşimi ve Mekanik Gürültünün Deneysel Olarak Belirlenmesi

İçten yanmalı motora sahip bir taşıtın sürüş karakteristiğini etkileyen temel parametreler motor devri ve motor yüküdür. Sürücü temelde taşıtın hızını ayarlar ve bu ayar için temel kontrol noktası gaz pedalıdır. Gaz pedalına basılma miktarı, taşıtın karşılaştığı dirençlere ve vites kademesine bağlıdır. Bu çalışmanın amacı taşıtın temel sürüş parametrelerindeki değişimin titreşim ve gürültüye etkisini deneysel olarak incelemektir. Bu amaçla düz yol koşullarında ve belirli bir vites kademesinde (5. vites) 40-110 km/h taşıt hız aralığında titreşim ve gürültü ölçümleri gerçekleştirilmiştir. Taşıt hızına bağlı olarak (40 km/h hızdan 110 km/h hıza), toplam ortalama titreşim yaklaşık 3 kat, gürültü ise 9,4 dB(A) artmıştır. Ayrıca 50 km/h ve 90 km/h taşıt hızlarındaki testler 4. vites kademesinde de tekrarlanmış ve 5. viteste elde edilen verilerle karşılaştırılmıştır. 5. vitesteki ölçüm sonuçları, toplam ortalama titreşim değerinin 4. vitese göre 50 km/h araç hızında %15,3 ve 90 km/h araç hızında %30,3 daha az olduğunu göstermiştir. Gürültü ölçüm sonuçları karşılaştırıldığında ise; her iki vites kademesi arasında dikkate değer bir fark görülmemiştir.

Experimental Determination of the Engine Vibration and Mechanical Noise Depending on Vehicle Speed

The main parameters affecting the driving characteristics of a vehicle with an internal combustion engine are engine speed and engine load. The driver essentially sets the vehicle speed and the key control point for this adjustment is the accelerator pedal. The amount of the pressure on the accelerator pedal depends on the gear and the resistances of the vehicle opposing its movement. The aim of this study is to experimentally examine the effects of variation in the main driving parameters on vibration and noise. For this purpose, vibration and noise measurements have been carried out vehicle speed range of 40-110 km/h in a particular gear (5th gear) and straight-line conditions. Depending on the vehicle speed (from 40 km/h to 110 km/h), the vibration total value increased by approximately 3 times and the noise increased by 9.4 dB(A). In addition, the tests at the vehicle speeds of 50 km/h and 90 km/h were repeated in the 4th gear and compared with the data obtained in the 5th gear. The measurement results in the 5th gear showed that the vibration total value is lesser than 15.3% at 50 km/h and 30.3% at 90 km/h vehicle speed compared to that of the 4th gear. When it comes to the noise measurement results were compared, no significant differences between the two gears were obtained.

___

  • [1] Santhosh, S., Velmurugan, V., Paramasivam, V., Thanikaikarasan, S. (2020). Experimental investigation and comparative analysis of rubber engine mount vibration and noise characteristics. Materials Today: Proceedings, 21, 638-642. https://doi.org/10.1016/j.matpr.2019.06.730
  • [2] Ramachandran, T., Surendarnath, S., Dharmalingam, R. (2021). Structural and suitability analysis of aluminium metal matrix composites for IC engine mountings. Materials Today: Proceedings, 37, 1524- 1528. https://doi.org/10.1016/j.matpr.2020.07.145
  • [3] Lion, A., Johlitz, M. (2020). A mechanical model to describe the vibroacoustic behaviour of elastomeric engine mounts for electric vehicles. Mechanical Systems and Signal Processing, 144, 106874. https://doi.org/10.1016/j.ymssp.2020.106874
  • [4] Carlucci, A.P., Chiara, F.F., Laforgia, D. (2006). Analysis of the relation between injection parameter variation and block vibration of an internal combustion diesel engine. Journal of Sound and Vibration, 295(1-2), 141-164. https://doi.org/10.1016/j.jsv.2005.12.054
  • [5] Wu, L., Bi, Y., Shen, L., Lei, J., Zhang, L., Zhou, F. (2019). Study on the effect of piston skirt profile on the vibration behavior of non-road high pressure common rail diesel engine. Applied Acoustics, 148, 457-466. https://doi.org/10.1016/j.apacoust.2019.01.007
  • [6] Ashok, B., Jeevanantham, A.K., Vignesh, R., Hire, K.R.B., Prabhu, K., Kumar, R.A.R., Shivshankar, N., Sudhagar, P.E. (2021). Calibration of engine parameters and fuel blend for vibration and noise characteristics in CRDI engine fuelled with low viscous biofuel. Fuel, 288, 119659. https://doi.org/10.1016/j.fuel.2020.119659
  • [7] Sharma, N., Patel, C., Tiwari, N., Agarwal, A.K. (2019). Experimental investigations of noise and vibration characteristics of gasoline-methanol blend fuelled gasoline direct injection engine and their relationship with combustion characteristics. Applied Thermal Engineering, 158, 113754. https://doi.org/10.1016/j.applthermaleng.2019.113754
  • [8] Gültekin, N., Mayda, M., Kilit, M. (2017). Benzin ve dizel motorlarda devir sayısının titreşime olan etkisinin incelenmesi. BEÜ Fen Bilimleri Dergisi, 6(2), 39-43. https://doi.org/10.17798/bitlisfen.333042
  • [9] Sarıdemir, S., Alçelik, N., Uygur, İ. (2016). Biyodizel-dizel yakıt karışımlarının motor titreşimine olan etkisinin incelenmesi. Makine Teknolojileri Elektronik Dergisi, 13(4), 103-110.
  • [10]Flekiewicz, M., Fabi, P., Flekiewicz, B. (2007). Engine block vibration level as a tool for fuel recognition. SAE Technical Paper, 2007-01-2162. https://doi.org/10.4271/2007-01-2162
  • [11]Sarıdemir, S., Polat, F., Kılınçel, M. (2016). Motor devir ve yükünün titreşim ve gürültü emisyonuna olan etkisinin incelenmesi. El-Cezeri Fen ve Mühendislik Dergisi, 3(3), 459-466. https://doi.org/10.31202/ecjse.258573
  • [12]Öztürk, E., Karabulut, H. (2012). Tek silindirli bir dizel motorunun dinamik ve titreşim analizleri. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 27(3), 491-500.
  • [13]Taghizadeh-Alisaraei, A., Ghobadian, B., Tavakoli-Hashjin, T., Mohtasebi, S.S. (2012). Vibration analysis of a diesel engine using biodiesel and petrodiesel fuel blends. Fuel, 102, 414–422. https://doi.org/10.1016/j.fuel.2012.06.109
  • [14]Alçelik, N., Kam., M. (2020). Dönen makinelerde eksenel kaçıklık ve dengesizliğin titreşim analizi. BŞEÜ Fen Bilimleri Dergisi, 7, 256-269. https://doi.org/10.35193/bseufbd.669289
  • [15]Sarıdemir, S. (2013). The effect of dwell angle on vibration characteristics of camshaft bearing housings. Journal of Mechanical Science and Technology, 27(12), 3571-3577. https://doi.org/10.1007/s12206-013-0940-y
  • [16]Nithin, S.K., Hemanth, K., Shamanth, V. (2021). A review on combustion and vibration monitoring of IC engine. Materials Today: Proceedings, 45, 65-70. https://doi.org/10.1016/j.matpr.2020.10.093
  • [17]Mobley, R.K. (1999). Vibration fundamentals. Woburn, MA: Butterworth-Heinemann.
  • [18]Uludamar, E., Tosun, E,. Aydın, K. (2016). Experimental and regression analysis of noise and vibration of a compression ignition engine fuelled with various biodiesels. Fuel, 177, 326–333. https://doi.org/10.1016/j.fuel.2016.03.028
  • [19]Çalık, A. (2018). Determination of vibration characteristics of a compression ignition engine operated by hydrogen enriched diesel and biodiesel fuels. Fuel, 230, 355-358. https://doi.org/10.1016/j.fuel.2018.05.053
  • [20]Çelebi, K., Uludamar, E., Özcanlı, M. (2017). Evaluation of fuel consumption and vibration characteristic of a compression ignition engine fuelled with high viscosity biodiesel and hydrogen addition. International Journal of Hydrogen Energy, 42(36), 23379-23388. https://doi.org/10.1016/j.ijhydene.2017.02.066
  • [21]Satsangi, D.P., Tiwari, N. (2018). Experimental investigation on combustion, noise, vibrations, performance and emissions characteristics of diesel/n-butanol blends driven genset engine. Fuel, 221, 44-60. https://doi.org/10.1016/j.fuel.2018.02.060
  • [22]Topgül, T., Sarıdemir, S., Zaman, Ç. (2020). Tek nokta enjeksiyonlu buji ile ateşlemeli bir motorda motor devri ve yükünün motor titreşimleri ve gürültüye etkisinin deneysel incelenmesi. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 8(3), 1948-1956. https://doi.org/10.29130/dubited.698173
  • [23]Patel, C., Tiwari, N., Agarwal, A.K. (2019). Experimental investigations of soyabean and rapeseed SVO and biodiesels on engine noise, vibrations, and engine characteristics. Fuel, 238, 86-97. https://doi.org/10.1016/j.fuel.2018.10.068
  • [24]Davies, P.O.A.L., Holland, K.R. (1999). I.C. engine intake and exhaust noise assessment. Journal of Sound and Vibration, 223(3), 425-444. https://doi.org/10.1006/jsvi.1998.2093
  • [25]Ih, J.G., Peat, K.S. (2002). On the causes of negative source impedance in the measurement of intake and exhaust noise sources. Applied Acoustics, 63(2), 153-171. https://doi.org/10.1016/S0003- 682X(01)00029-9
  • [26]Bharath, B.K., Selvan, V.A.M. (2021). An experimental investigation on rheological and heat transfer performance of hybrid nanolubricant and its effect on the vibration and noise characteristics of an automotive spark-ignition engine. International Journal of Thermophysics, 42, 37. https://doi.org/10.1007/s10765-020-02784-8
  • [27]Keskin, A. (2010). The influence of ethanol–gasoline blends on spark ignition engine vibration characteristics and noise emissions. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 32, 1851-1860. https://doi.org/10.1080/15567030902804749