Hirfanlı baraj gölünde bazı eser elementlerin ICP-OES ile tayini

Bu çalışmada, Kızılırmak üzerine kurulmuş olan Hirfanlı Baraj Gölü`nde eser elementlerin tayiniçin ICP-OES kullanıldı. Hirfanlı Baraj Gölü`nün değişik yerlerinden polietilen şişelere bir ikimililitre HCl eklenerek su örnekleri alındı. Bu örneklerdeki eser elementler, Perkin Elmer markaICP-OES cihazıyla tayin edildi. ICP-OES cihazıyla, barajdan alınan su örneklerindeki demir, bakır, kurşun, kadmiyum,krom, nikel, çinko, molibden ve selenyum elementleri tayin edildi. Uygun standart çözeltilerlebelirli dalga boylarında elementlerin kalibrasyon işlemi yapıldı. Cihaz önce sertifikalı örnektekielementlerin ölçümleri yapılarak duyarlılığı tespit edildi. Daha sonra su örneklerindekielementlerin analizleri yapıldı. Baraj gölüne en yakın yerde yapılan ölçümlere göre; Fe (III) 40± 0,3 µg/L, Cu (II) 10 ± 0,1 µg/L, Pb (II) 25 ± 0,1 µg/L, Cd (II) 18 ± 0,1 µg/L Cr (III) 15 ± 0,2µg/L, Ni (II) 12 ± 0.1 µg/L, Zn (II) 22 ± 0,2 µg/L, Mo (VI) 8 ± 0,1 µg/L, Se (IV) 35 ± 0,3 µg/Lolarak % 95 güven aralığı ve 4 ölçümün sonunda bulunmuştur.

Determination of some trace elements with ICP-OES in Hirfanlı dam lake

In this study, ICP-OES was used to determine trace elements in Hirfanlı Dam Lake, which was established on Kızılırmak. Water samples were taken from polyethylene bottles from different parts of Hirfanlı Dam Lake by adding two milliliters of HCl. Trace elements in these examples were determined by Perkin Elmer ICP-OES device. Iron, copper, lead, cadmium, chromium, nicel, zinc, molybdenum and selenium elements in the water samples from the dam were determined with the ICP-OES device. Calibration of the elements at certain wavelengths was performed with suitable standard solutions. The sensitivity of the elements in the certified sample was made by first measuring the device. Then, analysis of the elements in the water samples was made. According to the measurements nearest to the dam lake; Fe (III) 40 ± 0.3 µg / L, Cu (II) 10 ± 0.1 µg / L, Pb (II) 25 ± 0.1 µg / L, Cd (II) 18 ± 0.1 µg / L Cr (III) 15 ± 0.2 µg / L, Ni (II) 12 ± 0.1 µg / L, Zn (II) 22 ± 0.2 µg / L, Mo (VI) 8 ± 0.1 µg / L Se (IV) was found as 35 ± 0.3 µg / L at 95% confidence interval and after 4 measurements.

___

  • [1] Sönmez A.Y., Hisar O., Karataş M., Arslan G., Aras M.S. (2008). Sular Bilgisi. Nobel Bilim ve Araştırma Merkezi, Nobel Basımevi, Ankara.Magnetics® Databook, 2004 Magnetics Catalog, www.mag-inc.com.
  • [2] Iyengar G.V., Kasperek K., Feindenegen L.E. (1978). Retention of the metabolized trace elements in biological tissues following different drying procedures: I. Antimony, cobalt, iodine, mercury, selenium and zinc in rat tissues, Science of the environment, 10 (1), 1-16.
  • [3] Williams P.B., Buhr M.P., Weber R.W., Volz M.A., Koepke J.W., Selner J.C. (1995). Latex allergen in respirable particulate air pollution, Journal of allergy and clinical immunology, 95 (1), 88-95.
  • [4] Srikumar T.S. (1993). The mineral and trace element composition of vegetables, pulses and cereals of southern India, Food chemistry, 6 (2), 163-167.
  • [5] Ikem A., Egiebor N.O., Nyavor K. (2003). Trace elements in water, fish and sediment from Tuskegee Lake, Southeastern Usa, Water, Air, and Soil Pollution, 149, 51–75.
  • [6] Shigehiro K., Emiko M., Yoshinori I., Waka K., Takehiro K., Hideyuki Y., Mitsuru S., Koji T. (2009). A solid phase extraction using a chelate resin immobilizing carboxymethylated pentaethylenehexamine for separation and preconcentration of trace elements in water samples, Talanta, 79 (2), 146-152.
  • [7] Baytak S., Zeren F., Arslan Z. (2011). Preconcentration of trace elements from water samples on a minicolumn of yeast (Yamadazyma spartinae) immobilized TiO2 nanoparticles for determination by ICP-AES, Talanta, 84 (2), 319-323.
  • [8] Meng Q., Zhang J., Zhang Z., Wu T. (2016). Geochemistry of dissolved trace elements and heavy metals in the Dan River Drainage (China): distribution, sources, and water quality assessment, Environmental Science and Pollution Research, 23, 8091–8103.
  • [9] Min X., Weiwei S., Rong W. (2019). Spatial distribution and ecological risk assessment of potentially harmful trace elements in surface sediments from Lake Dali, North China, Water, 2544-2548.
  • [10] Inam R., Somer G. (2000). A direct method for the determination of selenium and lead in cow's milk by differential pulse stripping voltammetry, Food Chem., 69, 345-349.
  • [11] Somer G., Guliyeva G., Ekmekci G., Şendil O. (2003). Simultaneous determination of copper,lead, cadmium, zinc, and selenium in cow liver by DPP., Can. J. Chem., 81, 31-36.
  • [12] Somer G., Ünal Ü. (2004). A new and direct method for the trace element determination in cauliflower by differential pulse polarography, Talanta, 62, 323-327.
  • [13] Somer G., Nakışcı A., Kalaycı Ş., Şahin F. (2006). Trace element determination in Brassica oleraceae var. acephale by differential pulse polarography, Turkish Journal of chemistry, 30, 419-427.
  • [14] Somer G., Almas Z. (2006). Differential pulse polarographic determination of trace quantities of arsenic using catalytic hydrogen wave and its application, Journal of electroanalytical chemistry, 593 (1-2), 179-184.
  • [15] Somer G., Kalaycı Ş. (2015). A new and simple method for the simultaneous determination of Fe, Cu, Pb, Zn, Bi Cr, Mo, Se, and Ni in dried red grapes using differential pulse polarography, Food Analytical Methods, 8, 604-611.
  • [16] Lu Y., Liang X., Niyungeko C., Zhou J., Xu J., Tian G. (2018). A review of the identification and detection of heavy metal ions in the environment by voltammetry, Talanta, 178, 324-338.
  • [17] Kumar S. S., Sangilimuthu S. N. (2018). Synthesis and characterization of carbon nanotubes/asymmetric novel tetradentate ligand forming complexes on PIGE modified electrode for simultaneous determination of Pb(II) and Hg(II) in sea water, Lake water and well water using anodic stripping voltammetry, Journal electroanalytical chemistry, 810, 176-184.