Kaiser ve Von-Hann Pencereleri Tabanlı Yeni bir Pencere Fonksiyonu ve Onun Sayısal Süzgeç tasarımındaki Performans Analizi

Birçok sinyal işleme uygulamasında kullanılan sayısal süzgeçler, yinelemeli veya yinelemesiz olarak sınıflandırılırlar. Daima kararlı ve tam doğrusal faz karakteristiği sağlayabildiği için yinelemesiz sayısal süzgeçler literatürde önemli bir yer tutmaktadır. Bu makalede, yinelemesiz sayısal süzgeçlerin tasarımı için yeni bir hibrit pencere fonksiyonu önerilmektedir. Bu yeni pencere, literatürde Kaiser ve Von-Hann olarak bilinen iki farklı pencere fonksiyonun birleştirilmesiyle elde edilmiştir. İlk olarak, önerilen pencere fonksiyonun sahip olduğu iki bağımsız parametrenin sayısal süzgeç karakteristiği üzerindeki etkileri, minimum durdurma bandı zayıflatması ve geçiş bant-genişliği cinsinden analiz edilmiştir. Daha sonra, önerilen pencere fonksiyonunun sayısal süzgeç tasarımındaki performansının literatürde iyi bilinen diğer iki parametreli pencere fonksiyonlarıyla kıyaslamak için farklı süzgeç uzunluklarında karşılaştırma örnekleri verilmiştir. Benzeşim sonuçları, önerilen pencere fonksiyonun Kaiser-Hamming, Saramaki, Kaiser, Dolph-Chebychev, Cosh, Exponential ve Gaussian pencere fonksiyonlarına kıyasla daha iyi süzgeç tasarımı sağlayabildiğini göstermektedir. 

A New Window Function based on Kaiser and Von-Hann Windows and its Performance Analysis for Digital Filter Design

Digital filters, which are used in many signal processing applications, can be classified as recursive or nonrecursive. Since nonrecursive digital filters can provide inherent stability and exact linear phase characteristic, they have an important place in the literature. In this paper, a new hybrid function is proposed for the design of nonrecursive digital filters. This new window was obtained by combining two different window functions known as Kaiser and Von-Hann in the literature. First of all, the effects of two independent parameters of the proposed window function on the digital filter characteristic are analysed in terms of minimum stopband attenuation and transition bandwidth. Later, comparative examples for different filter lengths are given to compare the performance of the proposed window function in the design of digital filter with the well-known other two parameter window functions. Simulation results demonstrate that the proposed window function can provide a better filter design than Kaiser-Hamming, Saramaki, Kaiser, Dolph-Chebychev, Cosh, Exponential, and Gaussian window functions.

___

  • [1] A. Antoniou, Digital Signal Processing: Signal, Systems, and Filters, McGraw-Hill, USA, 2005.
  • [2] C. L. Dolph, A Current Distribution for Broadside Arrays Which Optimizes the Relationship Between Beamwidth and Side-Lobe Level, Proc. IRE, 34:335-348, 1946.
  • [3] J. F. Kaiser, Nonrecursive Digital Filter Design Using I0-Sinh Window Function, Proceedings of IEEE Int Symp Circuits and Systems (ISCAS’74), San Francisco, Calif, USA, 20-23, 1974.
  • [4] F. J. Harris, On the Use of Windows for Harmonic Analysis with the Discrete Fourier Transform, Proc. IEEE, 66:51-83, 1978.
  • [5] T. Saramaki, A Class of Window Functions with Nearly Minimum Sidelobe Energy for Designing FIR Filters, Proc. IEEE Int. Symp. Circuits and Systems, Portland, Ore, USA, 359-362, 1989.
  • [6] S. W. A. Bergen, A. Antoniou, Design of Nonrecursive Digital Filters Using the Ultraspherical Window Function, EURASIP Journal on Appl. Signal Proc., 12:1910-1922, 2005.
  • [7] K. Avci, A. Nacaroğlu, High Quality Low Order Nonrecursive Digital Filter Design Using Modified Kaiser Window, Proc. of CSNDSP’08, Graz, Austria, 239-242, 23-25 Temmuz 2008.
  • [8] K. Avci, A. Nacaroğlu, Cosh Window Family and Its Application to FIR Filter Design, Int. Journal of Electronics and Communications, 63(11): 907-916, 2009
  • [9] M. Mottaghi-Kashtiban, M. G. Shayesteh, New Efficient Window Function, Replacement for the Hamming Window, IET Signal Processing, 5(5):499-505, 2011.
  • [10] K. Avci, A. Nacaroğlu, Design of Nonrecursive Digital Filters Using the Exponential Window, Int. J. of Advanced Electrical & Electronics Engineering, 2(2):308-316, 2013.
  • [11] R. Pachauri, R. Saxena, S. N. Sharma, Studies on Z-Window Based FIR Filters, ISRN Signal Processing, 1-8, 2013.
  • [12] K. Avci, Kaiser-Hamming Window and its Performance Analysis for Nonrecursive Digital Filter Design, Journal of the Faculty of Engineering and Architecture of Gazi University, 29(4):823-833, 2014.
  • [13] K. M. M. Prabhu, Window Functions and Their Applications in Signal Proccesing, CRC Press, Boca Raton, USA, 2014.
  • [14] K. Avci, E. Gümüşsoy, Üstel Penceresi Tabanlı M-Kanallı Kosinüs Modüleli Süzgeç Öbeklerinin Tasarımı, 24. IEEE Sinyal İşleme ve İletişim Uygulamaları Kurultayı (SİU 2016), Zonguldak, 845-848, 16-19 Mayıs, 2016.
  • [15] S. R. Seydnejad, R. I. Kitney, Real-Time Heart Rate Variability Extraction Using the Kaiser Window, IEEE T Bio-Med Eng, 44(10):990-1005, 1997.
  • [16] D. Ashutosh, J. Alok, C. S. Pramod, Design and Performance Analysis of Adjustable Window Functions based Cosine Modulated Filter Banks, Digit Signal Process, 23(1):412-417, 2013.
  • [17] S. Ramkumar, J. Alok, S. Rajiv, An Optimized Design of Nonuniform Filter Bank Using Variable-Combinational Window Function, AEU-Int J Electron C, 67(7):595-601, 2013.
  • [18] S. Aljahdali, M. Nofal, Y. Albagory, A modified Array Processing Technique Based on Kaiser Window for Concentric Circular Arrays, International Conference on Multimedia Computing and Systems (ICMCS), Tangier, Fas, 458-461, 10-12 Mayıs 2012.
  • [19] L. Sumamo, Handwritten Word Segmentation using Kaiser Window, International Conference on Quality in Research (QIR), Yogyakarta, Endonezya, 73-78, 25-28 Haziran 2013.