Endüstriyel Tav Fırınlarında Bir ORC Sistemi Uygulaması ile Enerji Tasarrufu

Bu çalışmada, bir sanayi kuruluşunun doğalgaz yakıtlı haddehane tav fırınında enerji verimliliği çalışması yapılmıştır. Bu kapsamda fırın işletme koşullarında çalışırken sıcaklık ve baca gazı ölçümleri yapılmış, ölçüm verileri kullanılarak atık ısı potansiyeli hesaplanmıştır. Yapılan hesaplamalarda; atık ısı potansiyeli 3.630,31 kW olarak bulunmuştur. Atık ısı potansiyeli kullanılarak ORC sistemi ile elektrik üretimi hesabı yapılmıştır.

___

  • [1] S. McAllister, J. Chen, and A. C. Fernandez-Pello, Thermodynamics of Combustion, Fundamentals of Combustion Processes. 1st Edition, Springer, USA, 18-20, 2011.
  • [2] U.K. Terzi and R. Baykal. Efficient and effective use of energy: A case study of Tofas, Environmental Research, Engineering and Management, 1: 55 (2011) 29-33.
  • [3] B. Simsek, E.H. Simsek and T. Altunok, Empirical and statistical modeling of heat loss from surface of a cement rotary kiln system. Journal of the Faculty of Engineering and Architecture of Gazi University, 28: 1 (2013) 59-66.
  • [4] O. Ünlü, Sanayide enerji tasarrufu çalışmalarının önemi ve buhar sistemleri ile ilgili uygulama örnekleri”. IX. Ulusal Tesisat Mühendisliği Kongresi ve Sergisi Bildirileri, 2009.
  • [5] C. Xu and D. Cang, A brief overview of low CO2 emission technologies for iron and steel making. Journal of Iran and Steel Research, International, 17: 3 (2010) 1-7.
  • [6] M. Eyidoğan, D. Kaya, Ş. Dursun, O. Taylan, Endüstriyel tav fırınlarında enerji tasarrufu ve emisyon azaltma fırsatları. Gazi Üniversitesi Mühendislik ve Mimarlık Fakültesi Dergisi, 29: 4 (2014) 735-743.
  • [7] E. Wali, Optimum working fluids for solar powered Rankine cycle cooling of buildings. Solar Energy, 25: 3 (1980) 235-241.
  • [8] M. Eyidoğan, Organik Rankine Çevrimli Güç Üretim Sisteminin Enerji Ve Ekserji Analizi. Doktora Tezi, Karabük Üniversitesi Fen Bilimleri Enstitüsü, 2014.
  • [9] B. F. Tchanche, S. Quoilin, S. Declaye, G. Papadakis and V. Lemort, Economic optimization of small scale organic Rankine cycles”. 23rd International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS), Lausanne, Switzerland, 1-10, 2010.
  • [10] Papadopoulos, A. I., Stijepovic, M. and Linke, P. On the systematic design and selection of optimal working fluids for organic Rankine cycles. Applied Thermal Engineering, 30: 6-7 (2010) 760-769.
  • [11] O. Badr, S. D. Probert and P. W. O’Callaghan, Selecting a working fluid for a Rankine cycle engine. Applied Energy, 21:1 (1985) 1-42.
  • [12] V. Maizza, and A. Maizza, Unconventional working fluids in organic Rankine cycles for waste energy recovery systems. Applied Thermal Engineering, 21: 3 (2001) 381-390.
  • [13] H. Chen, D. Y. Goswami, and E. K. Stefanakos, A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable and Sustainable Energy Reviews, 14: 9 (2010) 3059-3067.
  • [14] B. F. Tchanche, G. Papadakis, G. Lambrinos and A. Frangoudakis, Fluid selection for a low-temperature solar organic Rankine cycle. Applied Thermal Engineering, 29: 11-12 (2009) 2468-2476.
  • [15] E. Wali, Working fluids for solar Rankine-cycle cooling systems. Energy, 5: 7 (1980) 631-639.
  • [16] T. C. Hung, T. Y. Shai and S. K. Wang, A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat. Energy, 22: 7 (1997) 661-667.
  • [17] Total references, “Turboden references”, http://www.turboden.eu/en/references/references-searchpdf.php?country = all&application=all&power=all, 2013.
  • [18] Reference selection “Tri-o-gen references” http://www.triogen.nl/references/reference-overview, 2013.
  • [19] Global project map “Ormat Inc” http://www.ormat.com/global-project, 2013.
  • [20] J. J. Bonilla, J. M. Blanco, L. Lopez and J. M. Sala, Technological recovery potential of waste heat in the industry of the Basque Country. Applied Thermal Engineering, 17: 3 (1997): 283-288.
  • [21] S. R. Latour, J. G. Menningmann, and B. L. Blanney, Waste heat recovery potential in selected industries. (EPA), 30: 7 (1982) 1-6.
  • [22] S. Quoilin, and V. Lemort, Technological and economical survey of organic Rankine cycle systems. 5th European Conference on Economics and Management of Energy in Industry, Algarve-Portugal, 4-5, 2009.
  • [23] N. Galanis, E. Cayer, P. Roy, E. S. Denis, and M. Desilets, Electricity generation from low temperature soures. Journal of Applied Fluid Mechanics, 2: 2 (2009): 55-67.
  • [24] BCS Inc. Waste heat recovery: technologies and opportunities in U.S. industry. US Dept. of Energy (DOE), USA, 25-29, 2008.
  • [25] R. Bohl, Waste heat recovery from existing simple cycle gas turbine plants – A case study. 18th Symposium on Industrial Application of Gas Turbines (IAGT), Banff, Alberta, Canada, 1-14, 2009.
  • [26] S. Quoilin, S. Declayeand and V. Lemort, Expansion machine and fluid selection for the organic Rankine cycle. 7th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics (HEFAT), Antalya, Turkey, 1-7, 2010.
  • [27] V. Maizza, and A. Maizza, Unconventional working fluids in organic Rankine cycles for waste energy recovery systems. Applied Thermal Engineering, 21: 3 (2001) 381-390.
  • [28] H. Chen, D. Y. Goswami, and E. K. Stefanakos, A review of thermodynamic cycles and working fluids for the conversion of low-grade heat. Renewable and Sustainable Energy Reviews, 14: 9 (2010) 3059-3067.
  • [29] T. C. Hung, T. Y. Shai, and S. K. Wang, A review of organic Rankine cycles (ORCs) for the recovery of low-grade waste heat. Energy, 22: 7 (1997) 661-667.
  • [30] R. Chacartegui, D. Sanchez, J. M. Munoz and T. Sanchez, Alternative ORC bottoming cycles for combined cycle power plants. Applied Energy, 86: 10 (2009) 2162-2170.
  • [31] G. Angelino, and P. Colonna di Paliano, Multicomponent working fluids for organic Rankine cycles (ORCs). Energy, 23: 6 (1998): 449-463.
  • [32] H. Chen, D. Yogi Goswami, M. M. Rahman, and E. K. Stefanakos, Energetic and exergetic analysis of CO2-and R32-based transcritical Rankine cycles for low-grade heat conversion. Applied Energy, 88: 8 (2011) 2802-2808.
  • [33] N. A. Lai, M. Wendland and J. Fischer, Working fluids for high-temperature organic Rankine cycles. Energy, 36: 1 (2011) 199-211.
  • [34] E. Cayer, N. Galanis, M. Desilets, H. Nesreddine and P. Roy, Analysis of a carbon dioxide trans critical power cycle using a low temperature source, Applied Energy, 86: 7-8 (2008) 1055-1063.
Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Gazi Üniversitesi , Fen Bilimleri Enstitüsü