Aynı Şartlarda Hazırlanmış Al/Bi3Ti4O12/n-Si (MFS) diyotların (60 Adet) Engel Yükseklikleri İle İdealite Faktörlerindeki Dağılım

Bu çalışmada, aynı şartlarda hazırlanmış 60 adet Al/Bi3Ti4O12/n-Si (MFS) diyot için engel

The barrier height (BH) and ideality factor (n) distribution in identically prepared Al/ Bi3Ti4O12/n-Si (MFS) structures

In this study, the values of barrier heights and ideality factors of identically fabricated Au/BTO/n-Si (MFS) type SBDs (60 dots) have been obtained from their intercepts and slopes linear parts offorward bias lnI vs V plots at room temperature. Experimental results show that these twoimportant parameters (BH and n) of the diodes change from diode to diode even if they areidentically prepared on same quarter n-Si wafer. These results are clearly important to understandthe physical origin of such non-ideal behavior so that it can be controlled in future such deviceapplications. High values of n can be attributed to the existence of a wide distribution of lowSchottky barrier height (SBH) patches, interfacial BTO layer and surface states. According to us,the BH differences over the contact area are a result of inhomogeneity interfacial layer thicknessor composition and BH between metal, grain boundaries and semiconductor and non-uniformityof the interfacial charges or dislocations.

___

  • [1] H. Tecimer, H. Uslu, Z.A. A. Lahmed, F. Yakuphanoglu, Ş. Altındal, On the frequency and voltage dependence of admittance characteristics of Al/PTCDA/P-Si (MPS) type Schottky barrier diodes (SBDs), Composites Part B, 57 (2014) 25-30.
  • [2] S. A. Yeriskin, M. Balbasi, A. Tataroĝlu, Frequency and voltage dependence of dielectric properties, complex electric modulus, and electrical conductivity in Au/7% graphene doped‐ PVA/n‐ Si (MPS) structures, J. Appl. Polym. Sci. 33:133 (2016) n/a-n/a.
  • [3] U. Aydemir, İ. Taşçıoğlu, Ş. Altındal, İ. Uslu, A detailed comparative study on the main electrical parameters of Au/n-Si and Au/PVA: Zn/n-Si Schottky barrier diodes, Materials science in Semicond. Proces, 16:6 (2013) 1865-1872.
  • [4] A. Kaya, E. Maril, Ş. Altındal, I. Uslu, The comparative electrical characteristics of Au/n-Si (MS) diodes with and without a 2% graphene cobalt-doped Ca3Co4Ga 0.001Ox interfacial layer at room temperature, Microelectron. Eng. 149 (2016) 166-171.
  • [5] İ. Tasciglu, W.A. Farooq, R. Turan, Ş. Altındal, F. Yakuphanoglu, Charge transport mechanisms and density of interface traps in MnZnO/p-Si diodes, J. Alloys and Compd.,590 (2014) 157-161.
  • [6] E. E. Tanrıkulu, D. E. Yıldız, A. Günen, Frequency and voltage dependence of electric and dielectric properties of Au/TiO2/n-4H-SiC (metal-insulator-semiconductor) type Schottky barrier diodes, Ş. Altındal, Physica Scripta, 90:9 (2015) 095801.
  • [7] Ç. Nuhoğlu, Ş. Aydoğan, A. Türüt, The barrier height inhomogeneity in identically prepared Pb/p-type Si Schottky barrier diotesSemicond. Sci. Technol. 18 (2003) 642.
  • [8] B.G. Kim, S.M. Cho, T.Y. Kim, H.M. Jang, Giant Dielectric Permittivity Observed in Pb-Based Perovskite Ferroelectrics, Phus. Rev. Lett., 86:15 (2001) 3404-3406.
  • [9] Xiaofeng Xu, Zhengkuan Jiao, Minyi Fu, Lixin Feng, Kaixun Xu, Rongqing Zuo, Xuezhi Chen , Physica C, Dielectric studies in a layered Ba based Bi-2222 cuprate Bi2Ba2Nd1.6Ce0.4Cu2O10+δ, 417 (2005) 166-170.
  • [10] Y.Y. Wu, X.H. Wang, L.T. Li, Ferroelectric and dielectric properties of La/Mn co-doped Bi4Ti3O12 ceramics, Chin. Phys. B, 19:03 (2010).
  • [11] W. Jo, H.J. Cho, T.W. Noh, Y.S. Cho, S.I. Kwun, Y.T. Byun, S.H. Kim, Ferroelectrics Studies on structural and electro-optic properties of ferroelectric bismuth titanate thin films, 152 (1994) 139.
  • [12] P.C. Joshi, S.B. Krupanidhi, A. Mansingh, Structural and electrical characteristics of SrTiO3 thin films for dynamic random access memory applications, J. Appl. Phys. 73:11 (1993) 7627.
  • [13] A. Z. Simoes, A.H.M. Gonzalez, C.S. Riccardi, E.C. Souza, F. Moura, M. A. Zaghete, E. Longo, J.A. Varela, Ferroelectric and dielectric properties of lantha num modified bismuth titanate thin films obtained by the polymeric precursor method, Electroceram., 13:1-3 (2004) 65-70.
  • [14] Y.G. Lue, X.L. Liang, Y.H. Tan, X.J. Zheng, Y.Q. Gong and L. He, Acta Phys. Sin., 60 (2011) 027701.
  • [15] T.Q. Shao, T.L. Ren, C.G. Wei, X.N. Wang, C.X. Li, J.S. Liu, L.T. Liu, J. Zhu, Z.J. Li PZT Based MFS Structure for FeFET, Integr. Ferroelectr., 57 (2003) 1241.
  • [16] Z. Xu, L. Goux, B. Kaczer, H. Vander Meeren, D. Wouters, J. Grouseneken, Relevance of the pulsed capacitance–voltage measurement technique for the optimization of SrBi2Ta2O9/high-k stack combination to be used in FeFET devices, Microelectron. Eng. 83 (2006) 2564.
  • [17] M.S. Bozgeyik, J.S. Cross, H. Ishiwara, K. Shinozaki, Characteristics of metal-ferroelectric-insulator-semiconductor structure using Sr0.8Bi2.2Ta2O9 and Sr0.8Bi2.2Ta2O9-BaZrO3 for ferroelectric gates, Microelectron. Eng., 87:11 (2010) 2173-2177.
  • [18] M. Okuyama, Y. Ishibashi, Ferroelectric Thin Films Basic Properties And Device Physics for Memory Applications, New-York: Springer, 2005.
  • [19] S.Y. Wu, A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor, IEEE Trans. Electron. Devices, 21:8 (1974) 499-504.
  • [20] F. Parlaktürk, Ş. Altındal, A. Tataroğlu, M. Parlak, A.A. Agasiev, On the profile of frequency dependent series resistance and surface states in Au/Bi4Ti3O12/SiO2/n-Si(MFIS) structures, Microelectron. Eng. 85:1 (2007) 81.
  • [21] S.M. Yoon, E. Tokumitsu, H. Ishiwara, Ferroelectric neuron integrated circuits using SrBi/sub 2/Ta/sub 2/O/sub 9/-gate FET's and CMOS Schmitt-trigger oscillators, IEEE Trans. Electron. Dev., 47 (2000) 1630.
  • [22] M. Gökçen, M. Yıldırım, Investigation of the inhomogeneous barrier height of an Au/Bi4Ti3O12/n-Si structure through Gaussian distribution of barrier height, Chin. Phys. B, 21:12 (2012) 128502-128508.
  • [23] M. Yıldırım, P. Durmuş, Ş. Altındal, Analyses of temperature-dependent interface states, series resistances, and AC electrical conductivities of Al/p-Si and Al/Bi4Ti3O12/p-Si structures by using the admittance spectroscopy method, Chin. Phys. B, 22:10 (2013) 108502.
  • [24] Ş. Altındal, H. Kanbur, A. Tatroğlu, M.M. Bülbül, The barrier height distribution in identically prepared Al/p-Si Schottky diodes with the native interfacial insulator layer (SiO2), Physica B, 399:2 (2007) 146-154.
  • [25] P. Chattopadcyay, B. Raychhaudhuri, New technique for the determination of series resistance of Schottky barrier diodes, Solid States Electron., 35 (1992) 1023.
  • [26] S.M. Sze, Physics of Semiconductor Devices, Wiley, New York, 1985.
  • [27] E.H. Rhoderick, Metal-Semiconductor Contacts, Oxford University Press, Oxford, 1978.
  • [28] M. Sağlam, F.E. Cimilli, A. Türüt, Experimental determination of the laterally homogeneous barrier height of Au/n-Si Schottky barrier diodes, Physica B, 348 (2004) 397-403.
  • [29] G. Güler, Ş. Karataş, Ö. Güllü, Ö. F. Bakkaloğlu, The analysis of lateral distribution of barrier height in identically prepared Co/n-Si Schottky diodes, Journal of Alloys and Compounds 486 (2009) 343-347.
  • [30] S. Duman, S. Doğan, B. Gürbulak, A. Türüt, The barrier-height inhomogeneity in identically prepared Ni/n-type 6H-SiC Schottky diodes, Appl. Phys. A, 91:2 (2008) 337-340.
  • [31] M.A. Yeganeh, R.K. Mamedov, Sh. Rahmatallahpur, Studying of barrier height and ideality factor relation in the nano sized Au-n type Si Schottky diodes, Superlattices and Microstructures, 50:1 (2011) 59-68.
  • [32] K. Akkiliç, A. Türüt, G. Çankaya, T. Kiliçoğlu, Correlation between barrier heights and ideality factors of Cd/n-Si and Cd/p-Si Schottky barrier diodes, Solid State Commun., 125:10 (2003) 551-556.
  • [33] Ş. Altındal, H. Kanbur, A. Tataroğlu, M. Bülbül, The barrier height distribution in identically prepared Al/p-Si Schottky diodes with the native interfacial insulator layer (SiO2), Physica B: Condensed Matter, 399 (2007) 146-154.
  • [34] Ö. Güllü, Ö. Barış, M. Biber, A. Türüt, Laterally inhomogeneous barrier analysis of the methyl violet/p-Si organic/inorganic hybrid Schottky structures, Applied Surface Science, 254 (2008) 3039-3044.
  • [35] K. Akkılıç, A. Türüt, G. Cankaya, T. Kılıçoğlu, Correlation between barrier heights and ideality factors of Cd/n-Si and Cd/p-Si Schottky barrier diodes, Solid State Communications, 125 (2003) 551-556.
  • [36] B. Güzeldir, M. Sağlam, A. Ateş, Laterally inhomogeneous barrier analysis of identically prepared Cd/CdS/n-Si/Au–Sb structures by SILAR method, Microelectronics Reliability, 51 (2011) 2179-2184.
  • [37] G. Güler, Ş. Karataş, Ö. Güllü, Ö. Bakkaloğlu, The analysis of lateral distribution of barrier height in identically prepared Co/n-Si Schottky diodes, Journal of Alloys and Compounds, 486 (2009) 343-347.
  • [38] R. T. Tung, Phs. Electron transport at metal-semiconductor interfaces: General theory, Rev. B., 45:13509 (1992).
  • [39] Mönch W., Phs. Rev. B., 37:7129 (1988).
  • [40] H. H. Guttler, J. H. Werner, Influence of barrier inhomogenities on noise at Schottky contacts, Appl. Phys. Lett. 56:12 (1990) 1113-1115.
  • [41] J. H. Werner, H. H. Guttler, Barrier inhomogeneities at Schottky contacts , J. Appl. Phys. 69:3 (1991) 1522-1533.
Gazi Üniversitesi Fen Bilimleri Dergisi Part C: Tasarım ve Teknoloji-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2013
  • Yayıncı: Gazi Üniversitesi , Fen Bilimleri Enstitüsü