Effects of electric fields on radical and antioxidant enzyme levels

Amaç: Günümüzde çevrenin kimyasal maddelerle kirletilmesi yoğun eleştirilere neden olurken; elektromagnetik çevre kirlenmesi gündemimize yeni girmeye başlamış konulardandır. Teknolofinin gelişimi ile elektromagnetik enerjinin kullanımının giderek yaygınlaşması nedeniyle çoğumuz sürekli olarak değişik şiddet, süre ve doğrultularda elektrik alanlara daha çok maruz kalmaktayız. Elektrik alanların sağlığımız üzerindeki etkilerini araştırmak amacıyla çok sayıda çalışma yapılmakta ve bu araştırmalar gün geçtikçe artmaktadır. Bu çalışmada farklı şiddet ve doğrultularda uygulanan elektrik alanların dalak ve testis dokularında lipid peroksidasyon ve antioksidan enzimler üzerindeki etkileri kobaylarda incelendi. Metod: Tahta kafesler üzerine monte edilmiş olan bakır plakalara potansiyel fark uygulanarak 1.8, 0İ9 ve 0.3 kV/m şiddetinde elektrik alanlar oluşturuldu. Her grupta 10 adet kobay olmak üzere toplam 60 adet erkek beyaz kobay günde 8 saat olmak üzere 3 gün boyunca elektrik alanlara sürekli olarak maruz bırakıldı. Elektrik alan uygulama işlemine saat 9.00'da başlanıp 17.00'de son verildi. On adet kobay ise kontrol grubunu oluşturdu. Farklı şiddet ve doğrultularda uygulanan elektrik alanların malondialdehit (MDA) ve superoksit dismutaz (SOD) seviyelerine etkisi araştırıldı. Sonuç: Dalak ve testis dokularında, uygulanan elektrik alanın şiddeti arttıkça MDA ve SOD seviyelerinde artış tespit edilmiştir. Tartışma: Günlük yaşamda farkına varmadan maruz kaldığımız şiddet ve doğrultulardaki elektrik alanlardan vücudumuzdaki radikal sentezinin etkilenebileceğini söyleyebiliriz.

Radikal ve antioksidan enzim seviyesine elektrik alanların etkisi

Purpose: Today environmental pollution by chemical substances is intensely criticized; however, electromagnetic pollution of the environment has only started to be discussed recently. Due to the development of technology and the increased use of electromagnetic energy, most of us are exposed to electric fields at different intensities, exposure periods and directions. Much research has been performed to investigate the effects of electric fields on our health and the number of these studies is increasing. The aim of this study is to determine lipid peroxidation and SOD levels ih spleen and testis tissues exposed to different intensities and directions of electric fields. Methods: Electric potentials were applied to copper plates mounted on wooden boxes to produce electric fields with magnitudes of 1.8, 0.9 and 0.3 W/m. Male white guinea pigs were continuously exposed to electric fields for 8 hours per day over 3 days. A total of 60 guinea pigs were exposed to electric fields. Each group of 10 guinea pigs was exposed from 9 a.m. to 5 p.m. Ten guinea pigs were used as controls. The effect of electric field exposure on malondialdehyde (MDA) and superoxide dismutase (SOD) levels was investigated for different intensities and directions. Results: Increasing the intensity of the electric fields caused an increase in the MDA and SOD levels detected in spleen and testis tissues. Conclusion: Electric fields, which we are exposed to without our being aware of it in our daily lives, may have an effect on the radical synthesis in our bodies.

___

  • 1. Repacholi MH. Standards on static and ELF electric and magnetic fields and their scientific basis. In. Grandolfo M and Michaelson SM (eds). Biological effects and dosimetry of static and ELF electromagnetic fields. Plenum Press, New York and London 1985; 667-684.
  • 2. Adey WR. A growing scientific consensus on the cell and molecular biology mediating, interactions with environmental electromagnetic fields. In. Ueno S (eds). Biological effects of magnetic and electromagnetic fields. Plenum Press, New York and London 1996.45-62.
  • 3. Kheifets L. Childhood leukemia and EMF. WHO EMF Project, Sensitivity of Children to EMF Exposure. Workshop Proceedings. 9-10 June 2004, Istanbul TURKEY.
  • 4. Desideri A, Falconi M, Polticelli F, Bolognesi M, Djnovic K, Rotilio G. Evolutionary conservativeness of electric field in the Cu,Zn superoxide dismutase active rite, Evidence for co-ordinated mutation of charged amino acid residues. J Mol Biol 1992; 223: 337-342.
  • 5. Irmak MK. Fadıltıoğlu E, Güleç M. Erdoğan H Yağmurcu M. Akyol Ö. Effects of electromagnetic radiation from a cellular telephone on the oxidant and antioxidant levels in rabbits. Cell Biochem Funct 2002; 20: 1-5.
  • 6. Lamb FS, Webb RC. Vascular effects of free radicals generated by electrical stimulation. Am J Physiol 1984; 247: H709-H714.
  • 7. Sanguinetti CM. Oxidant / antioxidant imbalance: Role in the pathogenesis of COPD. Respiration 1992.59: 20-23.
  • 8. Gutteridge JMC. Lipid peroxidation and antioxidants as biomarkets of tissue damage. Clin Chem 1995; 41: 1819-1828.
  • 9. Maccall JM, Braughler JM, Hall ED. Lipid peroxidation and the role of oxygen radicals in CNS injury Acts Anaesth Belg 1987.38: 373-379.
  • 10. Osman R Effect of local environment and protein on the mechanism of action of superoxide dismutase. Enzyme 1986; 36: 32-42.
  • 11. Salo DC. Pacifici RE, Lin SW, Giulivi C, Davies KJA. Superoxide dismutase undergoes proteolysis and fragmentation following oxidative modification and inactivation. J Biol Chem 1990; 265: 11919-11927.
  • 12. Scaiano JC, Mohtat N, Cozens FL, Mclean J. Thansandote A. Application of the radical pair mechanism to free radicals in organized systems: Can the effects of 60 Hz be predicted from studies under ststic fields? Bioelectromagnetics 1994; 15: 549-554.
  • 13. Benov LC, Antonov PA Ribarov SR. Oxidative damage the membrane lipids after electroporation. Gen Physial Biophys 1994, 13: 85-97.
  • 14. Wasowics W, Nrve S, Peretz A. Optimized steps in fluorometric determination of thiobarbituric acid reactive substances in serum: importance of extraction pH and influence of sample preservation and storage. Clin Chem 1993, 39: 2522-2526.
  • 15. Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem 1988; 34: 497500.
  • 16. Lowry OH, Rosebrough Nl, Fair AL, Randall RJ, Protein measurement with the folin phenol reagent. J Biol Chem 1951; 193: 265-275.
  • 17. Bamviera ML, Louro SRW, Wajnberg E, Hasson-Voloch A. Denervation alters protein-lipid interactions in membrane fractions from electrocytes of Electrophorus electrius (L.), Biophys Chem 2001; 91: 93-104.
  • 18. Güler G, Seyhan Atalay N, Özoğul C, Erdoğan D. Biochemical and structural approach to collagen synthesis under electric fields, Gen Physial Biophys 15; 1996: 429440.
  • 19. Blank M (ed.). Electromagnetic Fields. Biological Interactions and Mechanisms. Advances in Chemistry Series 250, Washington, DC, 1995.
  • 20. Liburdy RP. Calcium signaling in lyphocytes and ELF fields evidence for an electric field metric and a site of interaction involving the calcium ion channel. FEBS 1992; 301: 53-59.
  • 21. Güler G, Atalay NS. Changes in hydroxyproline levels in electric field tissue interaction. Indian J Biochem Bio 1996.33 531-533
  • 22 Marino AA, Berger TJ, Mitchell IT, Duhacek DA, Becker R. Electric field effects in selected biologic systems. Ann N Y Acad Sci 1983; 405: 436-444.
  • 23. Miller MW, Dooley DA, Cox C, Carstensen EL. On the mechanism of 60-Hz electric field induced effects in Pisum sativum L. roots: Vertical field exposures. Radiat Environ Biophys 1983; 22: 203.
  • 24. Roberston D, Miller MW, Carslensen EL. Relationship of 60-Hz electric field parameters to the inhibition of growth of Pisum sativum roots. Radiat Environ Biophys 1981: 19: 227.
  • 25. Roberston D, Miller MW, Cox C, Davis AT. Inhibition and recovery of growth processes in roots of Pisum sativum L. exposed to 60-Hz electric fields. Bioelectromagnetics 1981: 2:329.
  • 26. Yeh SL. Chang KY, Huang PC, Chen WJ. Effects of n-3 and n-6 fatty acids on plasma eicosanoids and liver antioxidant enzymes in rate receiving total parenteral nutrition. Nutrition 1997. 13: 32-36.