Comparison of the hemodynamic effects of sevoflurane and desflurane using a thoracic electrical bioimpedance monitor

Amaç: Genel anestezi sırasında kardiovasküler stabilitenin devam ettirilmesi, kalp hızı, kan basıncı, kardiak ritm ve bölgesel kan akımı üzerindeki zararlı etkilerden kaçınılması oldukça önemlidir. Çalışmamızda sevofluran ile desfluranın hemodinamik etkilerini torasik elektriksel biyoempedans yöntemi ile karşılaştırmayı amaçladık. Metod: Çalışmada 20-60 yaşları arasında ASA I-Il 40 hasta rastgele olarak 20'şer kişilik 2 gruba ayrıldı. İndüksiyon 7 mg/kg sodyum tiyopental ve 0,1 mg/kg vekuronyum bromid ve 1 fig/kg fentanil ile sağlandı. İdamede % 50 02 ve % 50 N20 ile sevofluran %2 veya desfluran %6 konsantrasyonlarda ile uygulandı. Hastalara 8 TEB elektrodu ve 5 EKG elektrodu takıldı. Bunlar Bernstein-Sramek eşitliğine göre düzenlenmiş NCCOM-3R7 (BOMED CO, ABD) TEB monitörüne bağlandı. Hastaların kalp hızı (KH), ortalama arter basıncı (OAB), kardiyak indeks ve hacim indeksi değerleri, indüksiyon öncesi (tl), entübasyondan 5 dakika sonra (t2), cerrahi insizyondan 5 dakika sonra (t3), takip eden 10. dakika. (14) ve 20. dakikada (t5) son olarak da ekstübasyondan 5 dakika (t6) sonra kaydedildi. Sonuçlar Student's t testi, Ki-kare testi ve Tekrarlı Ölçümlerde İki Yönlü Varyans Analizi yöntemleri ile değerlendirildi. Bulgular: Hasta özellikleri ve hemodinamik parametrelerin başlangıç değerleri bakımından istatistiksel bir farka rastlanmamıştır. KH değerlerinde her iki grupta da t4 ve t5'de başlangıca göre düşüş olmuştur (p

Sevofluran ve desfluranın hemodinamik etkilerinin torasik elektriksel biyoempedans yöntemi ile karşılaştırılması

Purpose: It is important to maintain cardiovascular stability and to avoid dangerous effects on the cardiovascular system during general anesthesia. Our aim is to compare the hemodynamic effects of sevoflurane and desflurane using a thoracic electrical bioimpedance (TEB) monitor. Methods: We randomized 40 patients, aged 20-60, ASA I-II group, into two groups. Anesthesia was induced with 7 mg/kg sodium thiopenthal, 1 /itg/kg fentanyl and 0.1 mg/kg vecuronium bromide. After intubation, 2% sevoflurane and 6% desflurane were given with 50% N2O and 02 to Group I (n=20) and Group II (n=20), respectively. Before anesthesia 8 TEB and 5 ECG (DII and V5) electrodes were placed and the patients were monitored using a NCCOM3-R 7 (BOMED CO, USA) TEB monitor, which was adjusted according to the Berstein-Sramek equality. The heart rate (HR), mean arterial pressure (MAP), cardiac index (CI) and stroke index (SI) of the patients were measured before induction (tl), 5 min after intubation (t2), 5 min after surgical incision (t3), on the 10th min (t4), on the 20th min (tS) and 5 min after extubation (t6). The results were evaluated by Student's t-test, chi-sq'uare test and repeated measure ANOVA. Results: Patients in the two groups did not differ in physical characteristics or the basal values of hemodynamic parameters. HR values were decreased significantly at times t4 and t5 in the two groups (p

___

  • 1. Keats AS. Anesthesia mortality - a new mechanism. Anesthesiology 1988; 68: 2-4.
  • 2. Ciofolo MJ, Reiz S. Circulatory effects of volatile anesthetic agents. Minerva Anestesiol 1999; 65: 232-238.
  • 3. Jones RM. Desflurane and sevoflurane: Inhalation anaesthetics for this decade? Br J Anaesth 1990; 65: 527-536.
  • 4. Weiskopf RB, Eger EI II. Daniel M, Noorani M. Cardiovascular stimulation induced by rapid increases in desflurane concentration in humans results from activation of tracheopulmonary and systemic receptors. Anesthesiology 1995; 83: 1173-1178.
  • 5. Bernstein DP. Noninvasive cardiac output measurement. In. Shoemaker WC, Ayres S. Grenuik A. Holbrook PR. Thompson WL (eds): Textbook of Critical Care. Philadelphia: WB Saunders Company; 1988. p. 159-185.
  • 6. Kaplan JA, Hemodynamic monitoring. In. Kaplan J A (ed): Cardiac Anesthesia. Philadelphia: WB Saunders Company; 1993. p. 261-341.
  • 7. Shoemaker WC, Appel PL, Kram HB, Nathan RC, Thompson JL. Multicomponent noninvasive physiologic monitoring of circulatory function. Crit Care Med 1988; 16: 482-490.
  • 8. Thangathurai D, Charbonnet C, Roessler P. Wo CC, Mikhail M, Yoahida R, Shoemaker WC. Continuous intraoperative noninvasive cardiac output monitoring using a new thoracic bioimpedance device. J Cardiothorac Vase Anesth 1997; 11: 440-444.
  • 9. Moore FA, Haenel JB, Moore EE. Alternatives to Swan-Ganz cardiac output monitoring. Surg Clinics of North America 1991; 71: 699-721.
  • 10. Holaday DA, Smith FR. Clinical characteristics and biotransformation of sevoflurane in healthy human volunteers. Anesthesiology 1981; 54: 100-106.
  • 11. Jones RM, Cashman JN, Mant TG. Clinical impressions and cardiorespiratory effects of a new fluorinated inhalation anaesthetic, desflurane (1-653), in volunteers. Br J Anaesth 1990; 64: 11-15.
  • 12. Eger EI II. New inhalated anesthetics. Anesthesiology 1994; 80: 906-922.
  • 13. Manohar M, Parks CM. Porcine systemic and regional organ blood flow during 1.0 and 1.5 minimum alveolar concentrations of sevoflurane anesthesia without and with 50% nitrous oxide. J Pharmacol Exp Ther 1984; 231: 640-648.
  • 14. Weiskopf RB, Cahalan MK, Eger EI II. Yasuda N, Rampil IJ, Ionescu P, Lockhart SH, Johnson B. Freire B. Kelley S. Cardiovascular actions of desflurane in nomiocarbic volunteers. Anesth Analg 1991; 73: 143-156.
  • 15. Wajima Z, Inoue T. Yoshikawa T. Imanaga K, Ogawa R. Changes in hemodynamic variables and catecholamine levels after rapid increase in sevoflurane or isoflurane concentration with or without nitrous oxide under endotracheal intubation. J Anesth 2000; 14: 175-179.
  • 16. Leung JM. Pastor DA. Dissociation between haemodynamics and sympathetic activation during anaesthetic induction with destluranes. Can J Anaesth 1998; 45; 533-540.
  • 17. Picker O. Scheeren TW, Amdt JO. Inhalation anaesthetics increase heart rate by decreasing cardiac vagal activity in dogs. Br J Anaesth 2001; 87: 748-754.
  • 18. Ebert TJ. Harkin CP. Muzi M. Cardiovascular responses to sevoflurane: a review. Anesth Analg 1995; 81: 11-22.
  • 19. Kazama T. Ikeda K. Comparison of MAC and the rate of rise of alveolar concentration of sevoflurane with halothane and isoflurane in the dog. Anesthesiology 1988; 68: 435-437.
  • 20. Bernard JM, Wouters PF. Doursout MF. Effects of sevoflurane and isoflurane on cardiac and coronary dynamics in chronically instrumented dogs. Anesthesiology 1990; 72: 659-662.
  • 21. Harkin CP. Pagel PS. Kersten JR. Direct negative inotropic and lusitropic effects of sevoflurane. Anesthesiology 1994: 81: 156-167.
  • 22. Crawford MW, Lerman J. Saldivia V. Hemodynamic and organ blood flow responses to halothane and sevoflurane anesthesia during spontaneous ventilation. Anesth Analg 1992; 75: 1000-1006.
  • 23. Taylor RH, Lerman J. Minimum alveolar concentration of desflurane and hemodynamic responses in neonates, infants and children. Anesthesiology 1991; 75: 975-979.
  • 24. Thomson IR, Bowering JB, Hudson RJ, Frais MA, RosenbJoom M, A comparison of desflurane and isoflurane in patients undergoing coronary artery surgery. Anesthesiology 1991; 75: 776-781.
  • 25. Lerman J. Oyston JP, Gallagher TM. The minimum alveolar concentration (MAC) and hemodynamic effects of halothane, isoflurane and sevoflurane in newborn swine. Anesthesiology 1990; 73 : 717-721.
  • 26. Cahalan MK. Weiskopf RB, Eger El II. Yasuda N, Ionescu P. Rampil IJ, Lockliart SH. Freire B. Peterson NA. Hemodynamic effects of desflurane / nitrous oxide anesthesia in volunteers. Anesth Analg 1991; 73: 157-164.
  • 27. Kawana S. Wachi J. Comparison of haemodynamic changes induced by sevoflurane and halothane in paediatric patients. Can J Anaesth 1995; 42: 603-607.
  • 28. Malan TP, DiNardo JA, Frink EJ. Cardiovascular effects of sevoflurane compared with those of isoflurane in volunteers. Anesthesiology 1995; 83: 918-928.
Gazi Medical Journal-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Gazi Üniversitesi Tıp Fakültesi