Influence of heating on chemical composition, antioxidant activity and protein quality of an advanced line Amaranthus cruentus L. seed flour

Amaranth is a pseudocereal of Andean origin, and compared to other crops, its seeds have a higher content of proteins, lipids and bioactive compounds of nutraceutical relevance. The goal of the present work is to study the chemical composition, antioxidant activity and biological value of the protein of an advance line Amaranthus cruentus L. seed flour (ACRU), compared with the same flour subjected to thermal treatment (90 ºC, 1 h). Regarding the proximal chemical composition, the protein and lipid contents stand out, reaching values of 19.59 g % and 7.47 g %, reflecting an increase of 17% and 50% in the treated sample, respectively. A significant increase (p

___

Aguilar, E.G., Cantarelli, M.A., Marchevsky, E.J., Escudero, N.L., Camiña, J.M. (2011). Multielemental analysis and classification of amaranth seeds according to their botanical origin. Journal of Agricultural and Food Chemistry, 59, 9059-9064. https://doi.org/10.1021/jf202610t

AOAC (2012). Moisture, Gravimetric Method AOAC N° 920.151; Ash, Complete Ignition Method AOAC N° 940.26; Protein, Kjeldahl Method AOAC N° 920.152; Lipid, Soxhlet Method AOAC N° 950.48; Crude fiber AOAC N° 930.10. Official methods of analysis of the AOAC International, 19th ed. Gaithersburg, MD, USA.

AOAC (1995). Calcium Oxalate Precipitation Method. AOAC N° 42.1.18. Official Methods of Analysis. Official methods of analysis of the AOAC international, 17th ed. Arlington, Virginia.

Barba de la Rosa, A.P., Fomsgaard, I.S., Laursen, B., Mortensen, A.G., Olvera-Martínez, L., Silva-Sánchez, C., Mendoza-Herrera, A., González-Castañeda, J., De LeónRodríguez, A. (2009). Amaranth (Amaranthus hypochondriacus) as an alternative crop for sustainable food production: phenolic acids and flavonoids with potential impact on its nutraceutical quality. Journal of Cereal Science, 49, 117-121. https://doi.org/10.1016/j.jcs.2008.07.012

Bressani, R. (1994). Composition and nutritional properties of amaranth. In: Paredes-Lopez O (ed) Amaranth Biology, Chemistry and Technology (p. 185-205). CRC Press, Boca Raton FL. https://doi.org/10.1201/9781351069601-10

Bressani, R. (2003). Amaranth. In: Caballero B (ed) Encyclopedia of Food Sciences and Nutrition, 2nd ed. (p. 166- 173). Academic Press, Oxford. https://doi.org/10.1016/B0-12-227055-X/00036-5

Burits, M., Bucar, F. (2000). Antioxidant activity of Nigella sativa essential oil. Phytotherapy Research: PTR, 14,323-328. https://doi.org/10.1002/1099- 1573(200008)14:5<323::AID-PTR621>3.0.CO;2-Q

Cataldo, D., Haroon, M., Schrader, L., Youngs, V. (1975). Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Communications in Soil Science and Plant Analysis, 6, 71-80. https://doi.org/10.1080/00103627509366547

Czerwiński, J., Bartnikowska, E., Leontowicz, H., Lange, E., Leontowicz, M., Katrich, E., Trakhtenberg, S., Gorinstein, S. (2004). Oat (Avena sativa L.) and amaranth (Amaranthus hypochondriacus) meals positively affect plasma lipid profile in rats fed cholesterol-containing diets. The Journal of Nutritional Biochemistry, 15(10), 622- 629. https://doi.org/10.1016/j.jnutbio.2004.06.002

Das Gupta, B.R., Boroff, D.A. (1968). Separation of toxin and hemagglutinin from crystalline type A by anion exchange chromatography and determination of their dimension by gel filtration. The Journal of Biological Chemistry, 243, 1065-1072.

Do Prado, V.C., Antunes, P.L., Sgarbieri, V.C. (1980). Antinutrients occurrence and some physicochemical properties of the protein fractions of five Brazilian soybean varieties. Archivos Latinoamericanos de Nutrición, 30, 551- 563.

Dodok, A.A., Modhir, V., Buchtová, V., Halásová, G., Poláček, I. (1997). Importance and utilization of amaranth in food industry. Part 2. Composition of amino acids and fatty acids. Nahrung, 41, 108-110. https://doi.org/10.1002/food.19970410211

Duarte-Correa, A., Jokl, L., Carlsson, R. (1986). Chemical constituents, in vitro protein digestibility and presence of antinutritional substance in amaranth grains. Archivos Latinoamericanos de Nutrición, 36, 319-326.

Emmons, C.L., Peterson, D.M., Paul, G.L. (1999). Antioxidant capacity of oat (Avena sativa L.) extracts. 2. In vitro antioxidant activity and contents of phenolic and tocol antioxidants. Journal of Agricultural and Food Chemistry, 47, 4894-4898. https://doi.org/10.1021/jf990530i

Escudero, N.L., Arellano, M.L., Luco, J.M., Gimenez, M.S., Mucciarelli, S.I. (2004). Comparison of the chemical composition and nutritional value of Amaranth cruentus flour and its protein concentrate. Plant Foods for Human Nutrition, 59 (1), 15-21. https://doi.org/10.1007/s11130-004-0033-3

Escudero, N.L., Zirulnik, F., Gomez, N.N., Mucciarelli, S.I., Gimenez, M.S. (2006). Influence of a protein concentrates from Amaranthus cruentus seeds on lipid metabolism. Experimental Biology and Medicine / Society for Experimental Biology and Medicine, 231(1), 50-59. https://doi.org/10.1177/153537020623100106

FAO/WHO Food and Agriculture Organization of the United Nations/World Health Organization (2015). Change by General standard for contaminants and toxins in food and feed (Codex stan 193-1995). http://www.fao.org/input/download/standards/17/CXS_193e_2015.pdf (accessed 09.11.2019)

FAO/WHO Food and Agriculture Organization of the United Nations/World Health Organization (2002). Evaluations of the Joint FAO/WHO Expert Committee on Food Additives (JECFA). http://apps.who.int/food-additives-contaminants-jecfa-database/chemical.aspx?chemID=709# (accessed 09.11.2019)

Ferreira, T.M., Arêas, J.A.G. (2010). Biodisponibilidade do cálcio do grão de amaranto antes e após extrusão Ciencia e Tecnologia de Alimentos. Ciência e Tecnologia de Alimentos, 30(2), 532-538. https://doi.org/10.1590/S0101-20612010000200037

Giami, S.Y., Adindu, M.N., Hart, A.D., Denenu, E.O. (2001). Effect of heat processing on in vitro protein digestibility and some chemical properties of African breadfruit (Treculia africana decne) seeds. Plant Foods for Human Nutrition, 56, 117-126. https://doi.org/10.1023/A:1011181412808

Hendek Ertop, M., Bektaş, M. (2018). Enhancement of bioavailable micronutrients and reduction of antinutrients in foods with some processes. Food and Health, 4(3), 159-165. https://doi.org/10.3153/FH18016

Kakade, M., Rackis, J., McGhee, J., Puski, G. (1974). Determination of trypsin inhibitor activity of soy products: A collaborative analysis of an improved procedure. Cereal Chemistry, 51, 376-382.

Koleva, I.I., van Beek, T.A., Linssen, J.P., de Groot, A., Evstatieva, L.N. (2002). Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochemical Analysis: PCA, 13, 8-17. https://doi.org/10.1002/pca.611

Marcocci, L., Packer, L., Droy-Lefaix, M.T., Sekaki, A., Gardès-Albert, M. (1994). Antioxidant action of Ginkgo biloba extract EGb 761. Methods in Enzymology, 234, 462-475. https://doi.org/10.1016/0076-6879(94)34117-6

Miller, D.S., Bender, A.E. (1955). The determination of the net utilization of proteins by a shortened method. The British Journal of Nutrition, 9, 382-388. https://doi.org/10.1079/BJN19550055

Nascimento, A.C., Mota, C., Coelho, I., Gueifão, S., Santos, M., Matos, A.S., Gimenez, A., Lobo, M., Samman, N., Castanheira, I. (2014). Characterization of nutrient profile of quinoa (Chenopodium quinoa), amaranth (Amaranthus caudatus), and purple corn (Zea mays L.) consumed in the North of Argentina: Proximates, minerals and trace elements. Food Chemistry, 148, 420-426. https://doi.org/10.1016/j.foodchem.2013.09.155

Pellet, P.L., Young, V.R. (1980). Nutritional evaluation of protein foods. Tokyo: The United Nations University. (Publication N° WHTR-3/UNUP-129) Japan.

Reeves, P.G., Nielsen, F.H., Fahey, G.C. Jr (1993). AIN-93 Purified diets for laboratory rodents: final report of the American Institute of Nutrition Ad Hoc writing committee on the reformulation of the AIN-76A rodent diet. The Journal of Nutrition, 123, 1939-1951. https://doi.org/10.1093/jn/123.11.1939

Repo de Carrasco, R., Encina-Zelada, C.R. (2008). Determinación de la capacidad antioxidante y compuestos fenólicos de cereales andinos: quinua (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) y kiwicha (Amaranthus caudatus). Revista de la Sociedad Química del Perú, 74(2), 85-99.

Rucci, A.O., Bertoni, M.H. (1974). Determinación de ácido fítico en subproductos de semillas de girasol. Anales de la Asociación Química Argentina, 62, 365-368.

Saija, A., Tomaino, A., Lo Cascio, R., Trombetta, D., Proteggente, A., De Pasquale, A., Uccella, N., Bonina, F. (1999). Ferulic and caffeic acids as potential protective agents against photooxidative skin damage. Journal of the Science of Food and Agriculture, 79, 476-480. https://doi.org/10.1002/(SICI)1097-

0010(19990301)79:3<476::AID-JSFA270>3.0.CO;2-L Salcedo-Chávez, B., Osuna-Castro, J.A., Guevara-Lara, F., Domínguez-Domínguez, J., Paredes-López, O. (2002). Optimization of the isoelectric precipitation method to obtain protein isolates from Amaranth (Amaranthus cruentus) seeds. Journal of Agricultural and Food Chemistry, 50, 6515-6520. https://doi.org/10.1021/jf020522t

Snedecor, G.W., Cochran, W.G. (1991). Statistical Methods, 8th ed., Wiley. ISBN: 0813815614, 9780813815619. Sun, M., Um, T., Sun, H., Zhang, M. (2014). Digestibility and structural properties of thermal and high hydrostatic pressure treated sweet potato (Ipomoea batatas L.) protein. Plant Foods for Human Nutrition, 69, 270-275. https://doi.org/10.1007/s11130-014-0426-9

Tosi, E.A., Ré, E., Lucero, H., Masciarelli, R. (2001). Dietary fiber obtained from amaranth (Amaranthus cruentus) grain by differencial milling. Food Chemistry, 73(4), 441- 443. https://doi.org/10.1016/S0308-8146(00)00326-5

Vinson, J.A., Proch, J., Bose, P. (2001). Determination of the quantity and quality of polyphenol antioxidants in foods and beverages. Methods in Enzymology, 335, 103-114. https://doi.org/10.1016/S0076-6879(01)35235-7

WHO/PHARM/92559 (1992) Quality Control Methods for Medicinal Plant Materials (811, 36-37). World Health Organization, Geneva 27, Switzerland.