Evaluation of prebiotic, probiotic, and synbiotic potentials of microalgae

Microalgae can be considered an alternative food ingredient thanks to their nutritional composition and bioactive molecules. Microalgae are considered a rich source of sulfated and non-sulfated polysaccharides, and certain types of polysaccharides vary depending on their taxonomic groups. It is thought that valuable bioactive compounds possessed by algae biomass can increase the vitality of probiotic bacteria by stimulating their growth and being a good source for lactic acid production. Probiotics are defined as living, microbial dietary supplements that beneficially affect the human organism with their effects on the intestinal tract when they are consumed adequately. Prebiotics are indigestible or poorly digested food ingredients that stimulate the growth or activity of probiotic bacteria. Synbiotic is a term that expresses the union of probiotics and prebiotics to exert health benefits on humans. Spirulina and Chlorella are good sources of protein and polysaccharides or oligosaccharides that have been suggested as potential prebiotic candidates. These microalgae are thought to have a stimulating effect on the growth of probiotic bacteria. In this study, synbiotic efficacy and prebiotic activity of microalgae on probiotic microorganisms will be discussed and their potential in this area will be revealed.

___

Agustini, T.W., Soetrisnanto, D., Ma’ruf, W.F. (2017). Study on chemical, physical, microbiological, and sensory of yoghurt enriched by Spirulina platensis. International Food Research Journal, 24(1), 367-371.

Ak, I., Çetin, Z., Cirik, Ş., Göksan, T. (2011). Gracilaria verrucosa (Hudson) papenfuss culture using an agricultural organic fertilizer. Fresenius Environmental Bulletin, 20(8a), 2156-2162.

Arterburn, L.M., Oken, H.A., Bailey Hall, E., Hamersley, J., Kuratko, C.N., Hoffman, J.P. (2008). Algal-oil capsules and cooked salmon: Nutritionally equivalent sources of docosahexaenoic acid. Journal of the American Dietetic Association, 108(7), 1204-1209. https://doi.org/10.1016/j.jada.2008.04.020

Beheshtipour, H., Mortazavian, A.M., Haratian, P., Khosravi-Darani, K. (2012). Effects of Chlorella vulgaris and Arthrospira platensis addition on the viability of probiotic bacteria in yogurt and its biochemical properties. European Food Research and Technology, 235(6), 1-10. https://doi.org/10.1007/s00217-012-1798-4

Bhowmik, D., Dubey, J., Mehra, S. (2009). Probiotic efficiency of Spirulina platensis -stimulating the growth of lactic acid bacteria. World Journal of Dairy & Food Sciences, 4(2), 160–163.

Blas-Valdivia, V., Ortiz-Butrón, R., Pineda-Reynoso, M., Hernández-Garcia, A., Cano-Europa, E. (2011). Chlorella vulgaris administration prevents HgCl2-caused oxidative stress and cellular damage in the kidney. Journal of Applied Phycology, 23(1), 53-58. https://doi.org/10.1007/s10811-010-9534-6

Borowitzka, M.A., Borowitzka, J.L. (1988). Micro‐algal biotechnology. UK: Cambridge University Press. ISBN-13: 978-0521323499

Borowitzka, M.A., Moheimani, N.R. (2013). Algae for Biofuels and Energy. Springer, Dordrecht. ISBN: 978-94-007-5479-9

Camacho, F., Macedo, A., Malcata, F. (2019). Potential industrial applications and commercialization of microalgae in the functional food and feed industries: a short review. Marine Drugs, 17(6), 312. https://doi.org/10.3390/md17060312

Carlson, J.L., Erickson, J.M., Lloyd, B.B., Slavin, J.L. (2018). Health effects and sources of prebiotic dietary fiber. Current Developments in Nutrition, 2(3), 1-8. https://doi.org/10.1093/cdn/nzy005

Candini, S. K., Ganesan, P., Suresh, P.V., Bhaskar, N. (2008). Seaweeds as a source of nutritionally beneficial compounds - A review. Journal of Food Science and Technology, 45(1), 1-13.

Chandrarathna, H.P.S.U., Liyanage, T.D., Edirisinghe, S.L., Dananjaya, S.H.S. (2020). Marine microalgae, Spirulina maxima-derived modified pectin, and modified pectin nanoparticles modulate the gut microbiota and trigger ımmune responses in mice. Marine Drugs, 18(175), 1–15. https://doi.org/10.3390/md18030175

Chen, Z., Wang, L., Qiu, S., Ge, S. (2018). Determination of microalgal lipid content and fatty acid for biofuel production. BioMed Research International, (1503126), 1-17. https://doi.org/10.1155/2018/1503126

Chu, W.L. (2012). Biotechnological applications of microalgae. IeJSME, 6(1), 24–37.

Cohen, Z. (1999). Chemicals from Microalgae. CRC, Taylor&Francis. ISBN 9780367399719

Culaba, A.B., Ubando, A.T., Ching, P.M.L., Chen, W.H., Chang, J.S. (2020). Biofuel from microalgae: sustainable pathways. Sustainability, 12(19), 1–19. https://doi.org/10.3390/su12198009

Davani-Davari, D., Negahdaripour, M., Karimzadeh, I., Seifan, M., Mohkam, M., Masoumi, S.J., Berenjian, A., Ghasemi, Y. (2019). Prebiotics: definition, types, sources, mechanisms, and clinical applications. Foods, 8(3), 1–27. https://doi.org/10.3390/foods8030092

Dawczynski, C., Schubert, R., Jahreis, G. (2007). Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chemistry, 103(3), 891-899. https://doi.org/10.1016/j.foodchem.2006.09.041

De Caire, G.Z., Parada, J.L., Zaccaro, M.C., De Cano, M.M. S. (2000). Effect of Spirulina platensis biomass on the growth of lactic acid bacteria in milk. World Journal of Microbiology and Biotechnology, 16(6), 563–565. https://doi.org/10.1023/A:1008928930174

Duygu Yalçın, D. (2019). Growth Kinetics of Scenedesmus obliquus strains in different nutrient media. Journal of Limnology and Freshwater Fisheries Research, 5(2), 95–103. https://doi.org/10.17216/limnofish.514166

Gibson, G.R., Scott, K.P., Rastall, R.A., Tuohy, K.M., Hotchkiss, A., Dubert-Ferrandon, A., Gareau, M., Murphy, E.F., Saulnier, D., Loh, G., Macfarlane, S., Delzenne, N., Ringel, Y., Kozianowski, G., Dickmann, R., Lenoir-Wijnkoop, I., Walker, C., Buddington, R. (2010). Dietary prebiotics: current status and new definition. Food Science & Technology Bulletin: Functional Foods, 7(1), 1-19. https://doi.org/10.1616/1476-2137.15880

Gouveia, L., Raymundo, A., Batista, A.P., Sousa, I., Empis, J. (2006). Chlorella vulgaris and Haematococcus pluvialis biomass as colouring and antioxidant in food emulsions. European Food Research and Technology, 222 (3), 362-367. https://doi.org/10.1007/s00217-005-0105-z

Grayburn, W.S., Tatara, R.A., Rosentrater, K.A., Holbrook, G.P. (2013). Harvesting, oil extraction, and conversion of local filamentous algae growing in wastewater into biodiesel. International Journal of Energy and Environment, 4(2), 185–190.

Gupta, S., Gupta, C., Garg, A.P., Prakash, D. (2017). Prebiotic efficiency of blue green algae on probiotics microorganisms. Journal of Microbiology & Experimen-tation, 4(4), 1-4. https://doi.org/10.15406/jmen.2017.04.00120

Gyenis, B., Szigeti, J., Ásványi-Molnár, N., Varga, L. (2005). Use of dried microalgal biomasses to stimulate acid production and growth of Lactobacillus plantarum and Enterococcus faecium in milk. Acta Agraria Kaposváriensis, 9(2), 53–59.

Hosikian, A., Lim, S., Halim, R., Danquah, M.K. (2010). Chlorophyll extraction from microalgae: A review on the process engineering aspects. International Journal of Chemical Engineering, (391632), 1-12. https://doi.org/10.1155/2010/391632

Hunt, R.W., Chinnasamy, S., Bhatnagar, A., Das, K.C. (2010). Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga, Chlorella sorokiniana. Applied Biochemistry and Biotechnology, 162(8), 2400-2414. https://doi.org/10.1007/s12010-010-9012-2

Jeong, H., Kwon, H.J., Kim, M.K. (2009). Hypoglycemic effect of Chlorella vulgaris intake in type 2 diabetic Goto-Kakizaki and normal wistar rats. Nutrition Research and Practice, 3(1), 23–30. https://doi.org/10.4162/nrp.2009.3.1.23

Jeon, J.K. (2006). Effect of Chlorella addition on the quality of processed cheese. Journal of the Korean Society of Food Science and Nutrition, 35(3), 373-377. https://doi.org/10.3746/jkfn.2006.35.3.373

Kahraman Ilıkkan, Ö. (2020). Chapter 8: Interactions of probiotics and lactic acid bacteria with heat shock proteins, apoptosis, and intracellular signaling pathways. In Berhardt, L.V. (eds). Advances in Medicine and Biology (pp. 237–251). USA: Nova Science Publishers. https://doi.org/10.1016/j.arthro.2012.05.044

Koyande, A.K., Chew, K.W., Rambabu, K., Tao, Y., Chu, D.T., Show, P.L. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8(1), 16-24. https://doi.org/10.1016/j.fshw.2019.03.001

Kromkamp, J. (1987). Formation and functional significance of storage products in cyanobacteria. New Zealand Journal of Marine and Freshwater Research, 27, 457-465. https://doi.org/10.1080/00288330.1987.9516241

Leal, B.E.S., Prado, M.R., Grzybowski, A., Tiboni, M., Koop, H.S., Scremin, L.B., Sakuma, A.C., Takamatsu, A.A., Santos, A.F. dos, Cavalcanti, V.F., Fontana, J.D. (2017). Potential prebiotic oligosaccharides from aqueous thermopressurized phosphoric acid hydrolysates of microalgae used in treatment of gaseous steakhouse waste. Algal Research, 24, 138–147. https://doi.org/10.1016/j.algal.2017.03.020

Lee, N.K., Park, J.S., Park, E., Paik, H.D. (2007). Adheren-ce and anticarcinogenic effects of Bacillus polyfermenticus SCD in the large intestine. Letters in Applied Microbiology, 44(3), 274-278. https://doi.org/10.1111/j.1472-765X.2006.02078.x

Liu, J., Kandasamy, S., Zhang, J., Kirby, C.W., Karakach, T., Hafting, J., Critchley, A.T., Evans, F., Prithiviraj, B. (2015). Prebiotic effects of diet supplemented with the cultivated red seaweed Chondrus crispus or with fructo-oligo-saccharide on host immunity, colonic microbiota and gut microbial metabolites. BMC Complementary and Alternative Medicine, 15, 279. https://doi.org/10.1186/s12906-015-0802-5

Lum, K.K., Kim, J., Lei, X.G. (2013). Dual potential of microalgae as a sustainable biofuel feedstock and animal feed. Journal of Animal Science and Biotechnology, 4(53), 1-7. https://doi.org/10.1186/2049-1891-4-53

Markou, G., Angelidaki, I., Georgakakis, D. (2012). Microalgal carbohydrates: An overview of the factors influencing carbohydrates production, and of main bioconversion technologies for production of biofuels. Applied Microbiology and Biotechnology, 96(3), 631-645. https://doi.org/10.1007/s00253-012-4398-0

Mata, T.M., Martins, A.A., Caetano, N.S. (2010). Microalgae for biodiesel production and other applications: a review. Renewable and Sustainable Energy Reviews, 14(1), 217-232. https://doi.org/10.1016/j.rser.2009.07.020

Mazinani, S., Fadaei, V., Khosravi-Darani, K. (2016). Impact of Spirulina platensis on physicochemical properties and viability of Lactobacillus acidophilus of probiotic UF feta cheese. Journal of Food Processing and Preservation, 40(6), 1318–1324. https://doi.org/10.1111/jfpp.12717

Mussgnug, J.H., Klassen, V., Schlüter, A., Kruse, O. (2010). Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. Journal of Biotechnology, 150(1), 51-56. https://doi.org/10.1016/j.jbiotec.2010.07.030

Nakamura, Y., Takahashi, J.I., Sakurai, A., Inaba, Y., Suzuki, E., Nihei, S., Fujiwara, S., Tsuzuki, M., Miyashita, H., Ikemoto, H., Kawachi, M., Sekiguchi, H., Kurano, N. (2005). Some cyanobacteria synthesize semi-amylopectin type α-polyglucans instead of glycogen. Plant and Cell Physiology, 46(3), 539-545. https://doi.org/10.1093/pcp/pci045

Nguyen, C.M., Kim, J.S., Song, J.K., Choi, G.J., Choi, Y.H., Jang, K.S., Kim, J.C. (2012). D-Lactic acid production from dry biomass of hydrodictyon reticulatum by simultaneous saccharification and co-fermentation using Lactobacillus coryniformis subsp. torquens. Biotechnology Letters, 34(12), 2235-2240. https://doi.org/10.1007/s10529-012-1023-3

Nuño, K., Villarruel-López, A., Puebla-Pérez, A.M., Romero-Velarde, E., Puebla-Mora, A.G., Ascencio, F. (2013). Effects of the marine microalgae Isochrysis galbana and Nannochloropsis oculata in diabetic rats. Journal of Functional Foods, 5(1), 106–115. https://doi.org/10.1016/j.jff.2012.08.011

O’Sullivan, L., Murphy, B., McLoughlin, P., Duggan, P., Lawlor, P.G., Hughes, H., Gardiner, G.E. (2010). Prebiotics from marine macroalgae for human and animal health applications. Marine Drugs, 8(7), 2038-64. https://doi.org/10.3390/md8072038

Omar, H.H., Dighriri, K.A., Gashgary, R.M. (2019a). The benefit roles of micro-and macro-algae in probiotics. Nature and Science, 17(11), 258–279. https://doi.org/10.7537/marsnsj171119.33

Pal, A., Kamthania, M.C., Kumar, A. (2014). Bioactive compounds and properties of seaweeds-a review. OALib, 1, 1-17. https://doi.org/10.4236/oalib.1100752

Pandey, K.R., Naik, S.R., Vakil, B.V. (2015). Probiotics, prebiotics and synbiotics- a review. Journal of Food Science and Technology, 52(12), 7577–7587. https://doi.org/10.1007/s13197-015-1921-1

Panghal, A., Janghu, S., Virkar, K., Gat, Y., Kumar, V., Chhikara, N. (2018). Potential non-dairy probiotic products – a healthy approach. Food Bioscience, 21, 80-89. https://doi.org/10.1016/j.fbio.2017.12.003

Parada, J.L., De Caire, G.Z., De Mulé, M.C.Z., De Cano, M.M.S. (1998). Lactic acid bacteria growth promoters from Spirulina platensis. International Journal of Food Micro-biology, 45(3), 225-228. https://doi.org/10.1016/S0168-1605(98)00151-2

Pascal, G., Denery, S., Bodinier, M. (2011). Probiotics, prebiotics, and synbiotics: Impact on the gut immune system and allergic reactions. Journal of Leukocyte Biology, 89 (5), 685-95. https://doi.org/10.1189/jlb.1109753

Plaza-Diaz, J., Ruiz-Ojeda, F.J., Gil-Campos, M., Gil, A. (2019). Mechanisms of action of probiotics. Advances in Nutrition, 10, 49–66. https://doi.org/10.1093/advances/nmy063

Priyadarshani, I., Rath, B. (2012). Commercial and industrial applications of micro algae – A review. J. Algal Biomass Utln, 3(4), 89–100.

Rodríguez-Lagunas, M.J., Azagra-Boronat, I., Saldaña-Ruíz, S., Massot-Cladera, M., Rigo-Adrover, M., Sabaté-Jofre, A., Franch, À., Castell, M., Pérez-Cano, F.J. (2017). Immunomodulatory role of probiotics in early life. Recent Advances in Pharmaceutical Sciences VII, 19–34.

Ru, I.T.K., Sung, Y.Y., Jusoh, M., Wahid, M.E.A., Nagappan, T. (2020). Chlorella vulgaris: a perspective on its potential for combining high biomass with high value bioproducts. Applied Phycology, 1(1), 2-11. https://doi.org/10.1080/26388081.2020.1715256

Sataloff, R. T., Johns, M. M., Kost, K. M. (2016). Probiotics, Prebiotics, and Synbiotics:Bioactive Foods in Health Promotion. Academic Press. ISBN: 978-0128021897

Sathasivam, R., Radhakrishnan, R., Hashem, A., Abd_Allah, E.F. (2019). Microalgae metabolites: A rich source for food and medicine. Saudi Journal of Biological Sciences, 26(4), 709–722. https://doi.org/10.1016/j.sjbs.2017.11.003

Schlagermann, P., Göttlicher, G., Dillschneider, R., Rosello-Sastre, R., Posten, C. (2012). Composition of algal oil and its potential as biofuel. Journal of Combustion, 285185, 1-14. https://doi.org/10.1155/2012/285185

Scieszka, S., Klewicka, E. (2020). Influence of the microalga Chlorella vulgaris on the growth and metabolic activity of Lactobacillus spp. bacteria. Foods, 9(7), 959. https://doi.org/10.3390/foods9070959

Shekharam, K.M., Venkataraman, L.V., Salimath, P.V. (1987). Carbohydrate composition and characterization of two unusual sugars from the blue green alga Spirulina platensis. Phytochemistry, 26(8), 2267-2269. https://doi.org/10.1016/S0031-9422(00)84698-1

Sornplang, P., Piyadeatsoontorn, S. (2016). Probiotic isolates from unconventional sources: A review. Journal of Animal Science and Technology, 58(26), 1-11. https://doi.org/10.1186/s40781-016-0108-2

Sun, J., Yoon, S.S. (2011). Probiotics, nuclear receptor signaling, and anti-inflammatory pathways. Gastroenterology Research and Practice, 2011(Cd), 14–19. https://doi.org/10.1155/2011/971938

Tipnee S., Ramaraj R., Yuwale, U. (2015). Nutritional evaluation of edible freshwater green macroalga Spirogyra varians. Life Science, 1(2), 1-7. Torun, Z., Konuklugil, B. (2020). Prebiotic effects of macroalgae. Ege Journal of Fisheries and Aquatic Sciences, 37(1), 103–112. https://doi.org/10.12714/egejfas.37.1.12

Varga, L., Szigeti, J., Kovács, R., Földes, T., Buti, S. (2002). Influence of a Spirulina platensis biomass on the microflora of fermented ABT milks during storage (R1). Journal of Dairy Science, 85, 1031-1038. https://doi.org/10.3168/jds.S0022-0302(02)74163-5

Varga, L., Szigeti, J., Ördög, V. (1999). Effect of a Spirulina platensis biomass and that of its active components on single strains of dairy starter cultures. Milchwissenschaft, 54(4), 187-190.

Wang, H.M.D., Chen, C.C., Huynh, P., Chang, J.S. (2015). Exploring the potential of using algae in cosmetics. Bioresource Technology, 184, 355-362. https://doi.org/10.1016/j.biortech.2014.12.001

Webb, L.E. (1982). Detection by Warburg manometry of compounds stimulatory to lactic acid bacteria. Journal of Dairy Research, 49(3), 479-486. https://doi.org/10.1017/S0022029900022615

Wilson, B., Whelan, K. (2017). Prebiotic inulin-type fructans and galacto-oligosaccharides: definition, specificity, function, and application in gastrointestinal disorders. Journal of Gastroenterology and Hepatology, 1, 64-68. https://doi.org/10.1111/jgh.13700