BESİN KARSİNOJENLERİNİN DETOKSİFİKASYONUNDA ALTERNATİF YÖNTEM: PROBİYOTİKLER

Besin hazırlama ve pişirmede kullanılan geleneksel ısıl işlemler (örneğin kızartma, fırınlama) besinin güvenilirliğini ve tüketilebilirliğini artırmak için yapılan uygulamalardır. Bununla birlikte, bu ısıl işlemler protein denatürasyonu, karbonhidratların çözünürlüğünde değişiklikler, vitamin bozunması ve yağ oksidasyonu yoluyla son ürünün kalitesinde bozulmaya neden olabilmekte ve çeşitli potansiyel zararlı bileşikler oluşabilmektedir. Bunlar içerisinden heterosiklik aromatik aminler, akrilamid ve polisiklik aromatik hidrokarbonların birçok çalışmada karsinojenik ve genotoksik nitelikte oldukları ispatlanmıştır. Bu karsinojenik bileşikleri ortadan kaldırmak için çeşitli fiziksel ya da kimyasal yöntemler olmasına rağmen bu yöntemlerin yeterince etkin kullanılmaması insan sağlığı için güvenilir ve başarılı alternatif yöntemlere ihtiyacı ortaya çıkarmıştır. Yararlı mikroorganizmalar olarak bilinen probiyotik bakterilerin antikarsinojenik etkileri ve hücre duvarı yapısından kaynaklı bağlanma yeteneklerinden yola çıkılarak diyet mutajenlerine bağlanabileceği ve bu şekilde detoksifiye (toksik etkileri yok etme) edebileceği üzerinde durulmaktadır. Bu derlemede de probiyotik bakterilerin besinlerde ısıl işlem sonucu oluşan karsinojenik bileşikler üzerindeki detoksifiye edici etkisini inceleyen araştırmalar değerlendirilmiştir.

AN ALTERNATIVE METHOD IN DETOXIFICATION OF FOOD CARCINOGENES: PROBIOTICS

Traditional heat treatments (eg frying, baking) used in food preparation and cooking are applications to improve the reliability and consumption of food. However, these thermal processes can lead to deterioration in the quality of the final product by protein denaturation, changes in the solubility of carbohydrates, vitamin degradation, and fat oxidation, and various potentially harmful compounds can occur unintentionally. Among them, heterocyclic aromatic amines, acrylamide and polycyclic aromatic hydrocarbons have proved to be carcinogenic and genotoxic in many studies. Although there are various physical or chemical methods to eliminate these carcinogenic compounds, the ineffective use of these methods has created the need for safe and successful alternative methods for human health. It is emphasized that probiotic bacteria, known as beneficial microorganisms, can bind to the diet mutagens based on their anticarcinogenic effects and binding ability from the cell wall structure and in this way it is thought to detoxify (eliminate toxic effects) them. In this review, the studies investigating the detoxification effect of probiotic bacteria on carcinogenic compounds resulting from heat treatment in foods are evaluated.

___

  • Abbès, S., Salah-Abbès, J.B., Sharafi, H., Jebali, R., Noghabi, K.A., Oueslati, R. (2013). Ability of Lactobacillus rhamnosus GAF01 to remove AFM1 in vitro and to counteract AFM1 immunotoxicity in vivo. Journal of Immunotoxicology, 10(3), 279-286.
  • Abou-Arab, A., Salim, A.-B., Maher, R., El-Hendawy, H., Awad, A. (2010). Degradation of polycyclic aromatic hydrocarbons as affected by some lactic acid bacteria. Journal of American Science, 6(10), 1237-1246.
  • Ayaz, A. (2014). Polisiklik Aromatik Hidrokarbonlar: Sağlık Riskleri Ve Önleme Stratejileri Paper presented at the IX. Uluslararası Beslenme ve Diyetetik Kongresi, Ankara.
  • Balogh, Z., Gray, J.I., Gomaa, E.A., Booren, A.M. (2000). Formation and inhibition of heterocyclic aromatic amines in fried ground beef patties. Food Chem Toxicol, 38(5):395-401.
  • Bartkiene, E., Bartkevics, V., Mozuriene, E., Krungleviciute, V., Novoslavskij, A., Santini, A., Rozentale, I., Juodeikiene, G., Cizeikiene, D. (2017). The impact of lactic acid bacteria with antimicrobial properties on biodegradation of polycyclic aromatic hydrocarbons and biogenic amines in cold smoked pork sausages. Food Control, 71, 285-292.
  • Brody, J.G., Moysich, K.B., Humblet, O., Attfield, K.R., Beehler, G.P., Rudel, R.A. (2007). Environmental pollutants and breast cancer: epidemiologic studies. Cancer: Interdisciplinary International Journal of the American Cancer Society, 109, 2667-2711.
  • Capuano, E., Ferrigno, A., Acampa, I., Serpen, A., Açar, Ö. Ç., Gökmen, V., Fogliano, V. (2009). Effect of flour type on Maillard reaction and acrylamide formation during toasting of bread crisp model systems and mitigation strategies. Food Research International, 42(9), 1295-1302.
  • Cheng, K.W., Chen, F., Wang, M. (2006). Heterocyclic amines: chemistry and health. Molecular Nutrition & Food Research, 50(12), 1150-1170.
  • Clements, S.J.R., Carding, S. (2018). Diet, the intestinal microbiota, and immune health in aging. Critical Reviews in Food Science and Nutrition, 58(4), 651- 661.
  • Delfino, R.J., Sinha, R., Smith, C., West, J., White, E., Lin, H.J., Liao, S.Y., Gim, J.S.Y., Ma, H.L., Butler, J. (2000). Breast cancer, heterocyclic aromatic amines from meat and N-acetyltransferase 2 genotype. Carcinogenesis, 21(4), 607-615.
  • Dominici, L., Villarini, M., Trotta, F., Federici, E., Cenci, G., Moretti, M. (2014). Protective effects of probiotic Lactobacillus rhamnosus IMC501 in mice treated with PhIP. J. Microbiol. Biotechnol, 24(3), 371-378.
  • Duangjitcharoen, Y., Kantachote, D., Prasitpuripreecha, C., Peerajan, S., Chaiyasut, C. (2014). Selection and characterization of probiotic lactic acid bacteria with heterocyclic amine binding and nitrosamine degradation properties. Journal of Applied Pharmaceutical Science, 4(7), 14-23.
  • Faridnia, F. (2010). The Binding Of Bifidobacterium Pseudocatenulatum G4 Tomutagenic/Carcinogenic Heterocyclic Aromatic Aminesin An In Vitro Study. Universiti Putra Malaysia.
  • Faridnia, F., Hussin, A., Saari, N., Mustafa, S., Yee, L., Manap, M. (2010). In vitro binding of mutagenic heterocyclic aromatic amines by Bifidobacterium pseudocatenulatum G4. Beneficial Microbes, 1(2), 149-154.
  • Ferrucci, L.M., Sinha, R., Graubard, B.I., Mayne, S.T., Ma, X., Schatzkin, A., Schoenfeld, P.S., Cash, B.D., Flood, A., Cross, A.J. (2009). Dietary meat intake in relation to colorectal adenoma in asymptomatic women. The American Journal of Gastroenterology, 104, 1231- 1240.
  • Friedman, M. (2015). Acrylamide: inhibition of formation in processed food and mitigation of toxicity in cells, animals, and humans. Food & Function, 6(6), 1752- 1772.
  • Gibis, M. (2016). Heterocyclic aromatic amines in cooked meat products: causes, formation, occurrence, and risk assessment. Comprehensive Reviews in Food Science and Food Safety, 15(2), 269-302.
  • Gibis, M., Weiss, J. (2017). Inhibitory effect of cellulose fibers on the formation of heterocyclic aromatic amines in grilled beef patties. Food Chemistry, 229, 828-836.
  • Gibson, G.R., Scott, K.P., Rastall, R.A., Tuohy, K.M., Hotchkiss, A., Dubert-Ferrandon, A., Gareau, M., Murphy, E.F., Saulnier, D., Loh, G., Macfarlane, S., Delzenne, N., Ringel, Y., Kozianowski, G., Dickmann, R., Lenoir-Wijnkoop, I., Walker, C., Buddington, R. (2010). Dietary prebiotics: current status and new definition. Food Science & Technology Bulletin: Functional Foods, 7(1), 1-19.
  • Haritash, A.K., Kaushik, C.P. (2009). Biodegradation aspects of Polycyclic Aromatic Hydrocarbons (PAHs): A review. Journal of Hazardous Materials, 169, 1-15.
  • Hernandez-Mendoza, A., Garcia, H., Steele, J. (2009). Screening of Lactobacillus casei strains for their ability to bind aflatoxin B 1. Food and Chemical Toxicology, 47(6), 1064-1068.
  • Hernandez‐Mendoza, A., González‐Córdova, A. F., Vallejo‐Cordoba, B., Garcia, H. S. (2011). Effect of oral supplementation of Lactobacillus reuteri in reduction of intestinal absorption of Aflatoxin B1 in rats. Journal of Basic Microbiology, 51(3), 263-268.
  • Hernandez-Mendoza, A., Malcata, F.X. (2014). Probiotics: Potential Role in Protection against Cancer Driven by Dietary Xenobiotics. In V.R. Rai & J.A. Bai (Eds.), Beneficial Microbes in Fermented Foods (p.489-506). Florida, FL: CRC Press, ISBN 978-1-4822-0663-0
  • John, E.M., Stern, M.C., Sinha, R., Koo, J. (2011). Meat consumption, cooking practices, meat mutagens, and risk of prostate cancer. Nutrition and Cancer, 63, 525– 37.
  • Kabak, B., Var, I. (2008). Factors affecting the removal of aflatoxin M1 from food model by Lactobacillus and Bifidobacterium strains. Journal of Environmental Science and Health Part B, 43(7), 617-624.
  • Katz, J. M., Winter, C. K., Buttrey, S. E., Fadel, J. G. (2012). Comparison of acrylamide intake from Western and guideline based diets using probabilistic techniques and linear programming. Food and Chemical Toxicology, 50(3), 877-883.
  • Khorshidian, N., Asli, M.Y., Hosseini, H., Shadnoush, M., Mortazavian, A.M. (2016). Potential anticarcinogenic effects of lactic acid bacteria and probiotics in detoxification of process-induced food toxicants. Iranian Journal of Cancer Prevention, 9(5), 1-13.
  • Lam, T.K., Cross, A.J., Consonni, D., Randi, G., Bagnardi, V., Bertazzi, P.A., Caporaso, N.E., Sinha, R., Subar, A.F., Landi, M.T. (2009). Intakes of red meat, processed meat, and meat mutagens increase lung cancer risk. Cancer Research, 69, 932–939.
  • Lili, Z., Junyan, W., Hongfei, Z., Baoqing, Z., Bolin, Z. (2017). Detoxification of cancerogenic compounds by lactic acid bacteria strains. Critical Reviews in Food Science and Nutrition, 1-16.
  • World Cancer Research Fund / American Institute for Cancer Research. (2007). Food, Nutrition, Physical Activity, and the Prevention of Cancer: a Global Perspective. Retrieved from http://www.aicr.org/assets/docs/pdf/reports/Second _Expert_Report.pdf (accessed 12.11.2018).
  • Meurillon, M., Engel, E. (2016). Mitigation strategies to reduce the impact of heterocyclic aromatic amines in proteinaceous foods. Trends in Food Science & Technology, 50, 70-84.
  • Mishra, H. N. and Das, C. (2003). A review on biological control and metabolism of aflatoxin. Critical Reviews in Food Science and Nutrition, 43, 245-264.
  • Nagao, M., Honda, M., Seino, Y., Yahagi, T., Sugimura, T. (1977). Mutagenicities of smoked condensates and the charred surface of fish and meat. Cancer Letters, 2, 221–226.
  • Nowak, A., Libudzisz, Z. (2009). Ability of probiotic Lactobacillus casei DN 114001 to bind or/and metabolise heterocyclic aromatic amines in vitro. European Journal of Nutrition, 48(7), 419-427.
  • Nowell, S., Coles, B., Sinha, R., MacLeod, S., Luke Ratnasinghe, D., Stotts, C., Kadlubar, F.F., Ambrosone, C.B., Lang, N.P. (2002). Analysis of total meat intake and exposure to individual heterocyclic amines in a case-control study of colorectal cancer: contribution of metabolic variation to risk. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 506-507, 175-185.
  • Orrhage, K., Sillerström, E., Gustafsson, J.-Å., Nord, C., Rafter, J. (1994). Binding of mutagenic heterocyclic amines by intestinal and lactic acid bacteria. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 311(2), 239-248.
  • Oz, F., Kaban, G., Kaya, M. (2007). Effects of cooking methods on the formation of heterocyclic aromatic amines of two different species trout. Food Chemistry, 104(1), 67-72.
  • Pei-Ren, L., Cheng-Chun, C., Ya-Hui, T. (2002). Antimutagenic activity of several probiotic bifidobacteria against benzo [a] pyrene. Journal of Bioscience and Bioengineering, 94(2), 148-153.
  • Phillips, D.H. (1999). Polycyclic aromatic hydrocarbons in the diet. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 443(1), 139-147.
  • Pizzolitto, R.P., Dalcero, A.M., Bueno, D.J., Cavaglieri, L., Armando, M.R., Salvano, M.A. (2011). Binding of aflatoxin B1 to lactic acid bacteria and Saccharomyces cerevisiae in vitro: a useful model to determine the most efficient microorganism: INTECH Open Access Publisher.
  • Rajendran, R., Ohta, Y. (1998). Binding of heterocyclic amines by lactic acid bacteria from miso, a fermented Japanese food. Canadian Journal of Microbiology, 44(2), 109-115.
  • Reddy, B.S., Rivenson, A. (1993). Inhibitory effect of Bifidobacterium longum on colon, mammary, and liver carcinogenesis induced by 2-amino-3-methylimidazo [4, 5-f] quinoline, a food mutagen. Cancer Research, 53(17), 3914-3918.
  • Rivas-Jimenez, L., Ramírez-Ortiz, K., González-Córdova, A., Vallejo-Cordoba, B., Garcia, H., HernandezMendoza, A. (2016). Evaluation of acrylamideremoving properties of two Lactobacillus strains under simulated gastrointestinal conditions using a dynamic system. Microbiological Research, 190, 19-26.
  • Sanders, M. E., Lenoir‐Wijnkoop, I., Salminen, S., Merenstein, D. J., Gibson, G. R., Petschow, B. W., Nieuwdorp, M., Tancredi, D.J., Cifelli, C.J., Jacques, P., Pot, B. (2014). Probiotics and prebiotics: prospects for public health and nutritional recommendations. Annals of the New York Academy of Sciences, 1309(1), 19-29.
  • Serrano-Niño, J., Cavazos-Garduño, A., Cantú-Cornelio, F., Gonzalez-Cordova, A., Vallejo-Cordoba, B., Hernández-Mendoza, A., García, H. (2015). In vitro reduced availability of aflatoxin B 1 and acrylamide by bonding interactions with teichoic acids from lactobacillus strains. LWT-Food Science and Technology, 64(2), 1334-1341.
  • Serrano-Niño, J., Cavazos-Garduño, A., HernandezMendoza, A., Applegate, B., Ferruzzi, M., San MartinGonzález, M., García, H. (2013). Assessment of probiotic strains ability to reduce the bioaccessibility of aflatoxin M 1 in artificially contaminated milk using an in vitro digestive model. Food Control, 31(1), 202-207.
  • Serrano‐Niño, J., Cavazos‐Garduño, A., González‐Córdova, A. F., Vallejo‐Cordoba, B., Hernández‐Mendoza, A., García, H. (2014). In vitro study of the potential protective role of Lactobacillus strains by acrylamide binding. Journal of Food Safety, 34(1), 62-68.
  • Sinha, R., Chow, W. H., Kulldorff, M., Denobile, J., Butler, J., Garcia-Closas, M., Weil, R., Hoover, R.N., Rothman, N. (1999). Well-done, grilled red meat increases the risk of colorectal adenomas. Cancer Research, 59(17), 4320-4324.
  • Skog, K., Solyakov, A. (2002). Heterocyclic amines in poultry products: a literature review. Food and Chemical Toxicology, 40(8), 1213-1221.
  • Sreekumar, O., Hosono, A. (1998). Antimutagenicity and the influence of physical factors in binding Lactobacillus gasseri and Bifidobacterium longum cells to amino acid pyrolysates. Journal of Dairy Science, 81(6), 1508-1516.
  • Stacewicz‐Sapuntzakis, M., Borthakur, G., Burns, J.L., Bowen, P.E. (2008). Correlations of dietary patterns with prostate health. Molecular Nutrition & Food Research, 52(1), 114-130.
  • Stidl, R., Sontag, G., Koller, V., Knasmüller, S. (2008). Binding of heterocyclic aromatic amines by lactic acid bacteria: results of a comprehensive screening trial. Molecular Nutrition & Food Research, 52(3), 322-329.
  • Stolzenberg-Solomon, R.Z., Cross, A.J., Silverman, D.T., Schairer, C., Thompson, F.E., Kipnis, V., Subar, A.F., Hollenbeck, A., Schatzkin, A., Sinha, R. (2007). Meat and meat-mutagen intake and pancreatic cancer risk in the NIH-AARP cohort. Cancer Epidemiology, Biomarkers & Prevention, 16, 2664–2675.
  • Tavan, E., Cayuela, C., Antoine, J.-M., Trugnan, G., Chaugier, C., Cassand, P. (2002). Effects of dairy products on heterocyclic aromatic amine-induced rat colon carcinogenesis. Carcinogenesis, 23(3), 477-483.
  • Terahara, M., Meguro, S., Kaneko, T. (1998). Effects of lactic acid bacteria on binding and absorption of mutagenic heterocyclic amines. Bioscience, Biotechnology, and Biochemistry, 62(2), 197-200.
  • Turesky, R. J. (2007). Formation and biochemistry of carcinogenic heterocyclic aromatic amines in cooked meats. Toxicology Letters, 168(3), 219-227.
  • Wang, S., Yu, J., Xin, Q., Wang, S., Copeland, L. (2017). Effects of starch damage and yeast fermentation on acrylamide formation in bread. Food Control, 73, 230- 236.
  • Weidenmaier, C., Peschel, A. (2008). Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nature Reviews Microbiology, 6(4), 276-287.
  • Wollowski, I., Rechkemmer, G., Pool-Zobel, B. L. (2001). Protective role of probiotics and prebiotics in colon cancer. The American Journal of Clinical Nutrition, 73(2), 451-455.
  • Bouvard, V.,, Loomis, D., Guyton, K.Z,, Grosse, Y., Ghissassi, F.E., Benbrahim-Tallaa, L., Guha, N., Mattock, H., Straif, K. (2015). Carcinogenicity of consumption of red and processed meat. Lancet Oncol, 16(16), 1599-600.
  • Zhang, X.B., Ohta, Y. (1991). Binding of mutagens by fractions of the cell wall skeleton of lactic acid bacteria on mutagens. Journal of Dairy Science, 74(5), 1477- 1481.
  • Zhao, H., Zhou, F., Qi, Y., Dziugan, P., Bai, F., Walczak, P., Zhang, B. (2013). Screening of Lactobacillus strains for their ability to bind benzo (a) pyrene and the mechanism of the process. Food and Chemical Toxicology, 59, 67-71.
  • Zheng, W., Gustafson, D.R., Moore, D., Hong, C.-P., Anderson, K.E., Kushi, L.H., Sellers, T.A., Folsom, A.R. (1998). Well-done meat intake and the risk of breast cancer. Journal of the National Cancer Institute, 90(22), 1724-1729.
  • Zsivkovits, M., Fekadu, K., Sontag, G., Nabinger, U., Huber, W.W., Kundi, M., Chakraborty, A., Foissy, H., Knasmüller, S. (2003). Prevention of heterocyclic amine-induced DNA damage in colon and liver of rats by different lactobacillus strains. Carcinogenesis, 24(12), 1913-1918.