Geçiş dönemindeki ineklerde stres parametreleri üzerine mineral uygulamasının etkileri

Bu çalışmanın amacı, geçiş dönemdeki ineklerin oksidatif stres parametreleri üzerine enjektabl bir mineral solüsyonunun etkilerini araştırmaktı. Çalışmada 20 adet Montofon ırkı ileri gebe inek kullanıldı. İki eşit gruba ayrılan ineklerden, deney grubuna doğumuna yaklaşık 3 hafta kala tek doz mineral solüsyonu, kontrol grubuna ise aynı dönemde sadece izotonik sodyum klorür solüsyonu uygulandı. Çalışmadaki tüm sığırlarda eritrosit lipid peroksidasyonu, plazma glutathiyon peroksidaz (GSHPx), katalaz (CAT), vitamin E ve vitamin C düzeyleri belirlendi. Çalışmada malondialdehit (MDA), GSHPx, CAT, vitamin E ve vitamin C gibi oksidatif stres parametreleri yönünden her iki grupta da istatistiksel farklılıklar saptansa da, doğum sonrası dönemde MDA düzeylerindeki azalmalar ile GSHPx ve CAT düzeylerindeki artışlar deney grubunda oksidatif stresin azalma eğiliminde olduğunun göstergesi olarak kabul edildi. Sonuçta, özellikle selenyum, bakır, çinko ve mangan içeren bir mineral solusyonunun geçiş döneminin başlangıcında uygulanmasının oksidatif stresi önlemede etkili olabileceği kanaatine varıldı.

The effects of mineral solution on stress parameters in the transition cows

The aim of this study was to determined the effects of injectable mineral solution on the changes of oxidative stres parameters in the cows during transition period. In the study 20 pregnant Swiss- Brown late-pregnant cows were used. The cows were divided into 2 equal groups; in the experiment group one dose injectabl mineral solution were injected, but the control group was only injected with isotonic sodium chloride 3 weeks before the expected calving. The erythrocyte lipid peroxidation, plasma glutathione peroxidase (GSHPx), catalase (CAT), vitamin E and vitamin C levels were determined in all groups. Although the significant differences were determined in oxidative stres parameters such as malondialdehyde (MDA), GSHPx, CAT, vitamin E and vitamin C levels, the decreased level of MDA and increased levels of GSHPx and CAT suggested a declining tendency of oxidative stres in the experiment group. It was concluded that the injectabl mineral solution, especially involved selenium, copper, zinc and manganase that administered at the beginning of transition period could be effective in preventing the oxidative stress.

___

  • 1. Curtis CR, Erb H, Sniffen C, et al. Association of periparturient hypolcalcemia with eight periparturient disorders in Holstein cows. J Am Vet Med Assoc 1983; 5: 559.
  • 2. Goff JP, Horst RL. Physiological changes at parturition and their relationship to metabolic disorders. J Dairy Sci 1997; 80: 1260–1268.
  • 3. Grummer RR. Impact of changes in organic nutrient metabolism on feeding the transition dairy cow. J Anim Sci 1995; 73: 2820-2833.
  • 4. Başoğlu A, Sevinç M. Evcil Hayvanlarda Metabolik ve Endokrin Hastalıklar. I. baskı, Konya: Pozitif Matbaacılık, 2004.
  • 5. Spears JW. Micronutrients and immune function in cattle. Proceed Nutr Soc 2000; 59: 587-594.
  • 6. Campbell MH, Miller JK. Effect of Supplemental Dietary Vitamin E and Zinc on Reproductive Performance of Dairy Cows and Heifers Fed Excess Iron. J Dairy Sci 1998; 81: 2693-2699.
  • 7. Hawkins D, Franklin BVS. “The Effect of Injectable Trace Elements (Multimin) on Health and Reproductıon Parameters in New Zealand Dairy Herds”. http://www.blbadv.com/Multimin/Multimin_Dairy_Trial_NZ.p df.18.05.2010.
  • 8. Nocek JE, Socha MT, Tomlinson DJ. The Effect of Trace Mineral Fortification Level and Source on Performance of Dairy Cattle. J Dairy Sci 2006; 89: 2679-2693.
  • 9. Akkuş İ. Serbest radikaller ve fizyopatolojik etkileri. Konya: Mimoza yayınları, 1995.
  • 10. Bramley PM, Elmadfa I, Kafatos A, et al. Vitamin E. (review). J Sci Food Agric 2000; 80: 913-938.
  • 11. Burton GW, Joyce A, Ingold KU. Is Vitamin E Only Lipid- Soluble, Chain-Breaking Antioxidant in Huöman Blood Plasma and Erytrocyte Membranes? Arch Biochem Biophys 1983; 221(1): 281-290.
  • 12. Cheeseman KH, Slater TF. An Introduction to free radical biochemistry. Br Med Bull 1993; 49(3): 481-493.
  • 13. Ceratti PA, Trump BF. Inflamation and oxidative stres in carcinogenesis. Cancer cell 1991; 3: 1-7.
  • 14. Ghosh J, Myers CE. Inhibition of arachidonate 5- lipoxygenase triggers massive apoptosis in human prostate cancer cells. Proc Natl Acad Sci 1998; 95: 13182-13187.
  • 15. Gutteridge JMC, Hallivell B. The measurement and mechanism of lipid peroxidation in biological systems. Trends Biochem Sci 1990; 15(4): 129-135.
  • 16. Kohen R, Nyska A. Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 2002; 30: 620-650.
  • 17. Flohe RB, Traber MG. Vitamin E: function and metabolism. Faseb J 1999; 13: 1145-1155.
  • 18. Yalçın S. Serbest Radikaller ve Patolojik Etkileri. Sendrom 1992; 4: 40-43.
  • 19. Machlin LJ, Bendich A. Free radical tissue damage: Protective role of antioxidant nutrients. Faseb J 1987; 1: 441-446.
  • 20. Osada H, Watanabe Y, Nishimura Y, et al. Profile of trace element concentrations in the feto-placental unit in relation to fetal growth. Acta Obstet Gynecol Scan 2002; 81: 931- 937.
  • 21. Evans PH. Free radicals in brain methabolism and pathology. Br Med Bull 1995; 49: 577-587.
  • 22. Lightbody JH, Stevenson LM, Jackson F, Donaldson K, Jones DG. Comparative aspects of plasma antioxidant status in sheep and goats, and the influence of experimental abomasal nematoda infection. J Comp Pathol 2001; 124 (2-3): 192-199.
  • 23. Placer AZ, Linda LC, Johnson B. Estamination of product of lipid peroxidation (Malonyldialdehyde) in biochemical systems. Anal Biochem 1966; 16: 359-364.
  • 24. Goth L. A Simple method for determination of serum catalase activity and revision of reference range. Clin Chim Acta 1991; 196: 143-152.
  • 25. Lawrence RA, Burk RF. Glutathione peroxidase activity in selenium-deficient rat liver. Biochem Biophys Res Commun 1976; 71: 952-958.
  • 26. Martinek RG. Method for determination of vitamin E (total tocopherols) in serum. Clin Chem 1964; 10: 1078-1086.
  • 27. Kyaw A. A simple colorimetric method for ascorbic acid determination in blood plasma. Clin Chim Acta 1978; 16: 151-157.
  • 28. Abdelrahman MM, Kincaid RL. Deposition of cooper, manganese, zinc, and selenium in bovine foetal tissue at different stages of gestation. J Dairy Sci 1993; 76: 3588– 3593.
  • 29. Paterson JE, MacPherson A. The influence of low cobalt intake on the neutrophil function and severity of Ostertagia infection in cattle. British Vet J 1990; 146: 519-530.
  • 30. Reddy PG, Frey RA. Nutritional modulation of immunity in domestic food animals. Adv Vet Sci Comp Med 1990; 35: 255-281.
  • 31. Kremidjian SL, Stotzky G. Selenium and immune responses. Environ Res 1987; 42: 277-303.
  • 32. Raymond JS. Selenium metabolism and function. J Anim Sci 1986; 4: 42-49.
  • 33. Sies H, Stahl W, Sundquist AR. Antioxidant Functions of Vitamins. Annals New York Acad Sci 1992; 669: 7-15.
  • 34. Lacetera N, Bernabucci U, Ronchi B, Nardone A. Effects of selenium and vitamin E administration during a late stage of pregnancy on colostrum and milk production in dairy cows, and on passive immunity and growth of their offspring. Am J Vet Res 1996; 57: 1776-1780.
  • 35. Karakılçık AZ, Aksakal M. Selenyumun Bazı Fizyolojik işlevleri, Metabolizması ve E vitamini ile Arasındaki İlişkileri. Gaziantep Üni Tıp Fak Derg 1993; 4: 283-291.
  • 36. Kincaid R. Changes in the concentration of minerals in blood of peripartum cows. Mid-South Ruminant Nutrition Conference, Arlington, Texas, 2008.
  • 37. Gutteridge JMC. Free radicals in disease processes: a compilation of cause and consequence. Free Radic Res Commun 1993; 19(3): 141-158.
  • 38. Moore K, Roberts LC. Measurement of lipid peroxidation. Free Radic Res 1998; 28: 659-671.
  • 39. Comborti M. Three models of free radical-induced cell injury. Chem Biol Interact 1989; 72 (1-2): 1-56,
  • 40. Hallivell B, Gutteridge JMC. The importance of free radicals and catalytic metal ions in human diseases. Mol Aspects Med 1985; 8(2): 189-193.
  • 41. Leung HW, Vang MJ, Mavis RD. The cooperative interaction between vitamin E and vitamin C in suppression of peroxidation of membrane phospholipids. Biochim Biophys Acta 1981; 664: 266-272.
  • 42. Vannucchi H, Jordoa-Junior AA, Iglessias AC, Morandi MV, Chiarello PG. Effects of different diatery concentrations of vitamin E on lipid peroxidation in rats. Arch Latinoam Nutr 1997; 47: 34-37.
  • 43. Doba T, Burton GW, Ingold KU. Antioxidant and coantioxidant activity of vitamin C. The effect of vitamin C, either alone or in the presence of vitamin E or a water soluble vitamin E analogue, upon the peroxidation of aqueous multilamellar phospholipids liposomes. Biochim Biophys Acta 1985; 835: 298-303.
  • 44. Niki E, Saito T, Kawakami A, Kamiya Y. Inhibition of oxidation of methyl linoleate in solution by vitamin E and vitamin C. J Biol Chem 1984; 259: 4177-4182.
  • 45. Le Blanc SJ, Herdt TH, Seymour WM, Duffıeld TF, Leslie KE. Peripartum serum vitamin E, retinol, and beta-carotene in dairy cattle and their associations with disease. J Dairy Sci 2004; 87(3): 609-619.
  • 46. Mudron P, Rehage J, Sallmann HP, et al. Plasma and liver alpha-tocopherol in dairy cows with left abomasal displacement and fatty liver. Zentralbl Veterinarmed A 1997; 44(2): 91-97.
  • 47. Kızıl Ö, Akar Y, Saat N, Yüksel M, Kızıl M. The plasma lipid peroxidation intensity (MDA) and chain-breaking antioxidant concentrations in the cows with clinic or subclinic mastitis. Rev Vet Med 2007; 158 (11): 529-533.
  • 48. Kızıl Ö, Akar Y, Saat N, Yüksel M, Saat N: Oxidative stress in cows with acute puerperal metritis. Revue Med Vet 2010; 161 (7): 353-357.