Kobaylarda timus' un postnatal gelişimi üzerinde makroskobik ve ışık mikroskobik incelemeler

Bu araştırmada, postnatal dönemde kobay timus'larında (thymus) meydana gelen makroskobik ve ışık mikroskobik değişimler incelendi. Bu amaçla çalışmada, l günlük, 1,2,4, 6, 8, 12, 16, 20 ve 24 haftalık olmak üzere on grup oluşturuldu. Her gruptan altı adet olmak üzere toplam altmış adet kobay kullanıldı. Bir günlük kobaylar, tam gelişmiş bir timus'a sahipti. Korteks (cortex) ve medulla kolaylıkla ayırt edildi. Korteks'te; çok sayıda küçük lenfosit, lenfoblast, makrofaj ve epiteliyal retikulum hücreleri, medulla'da ise; lenfositler, epiteliyal retikulum hücreleri ve Hassal cisimcikleri (Corpusculum thymicum) görüldü. Doğumdan sonra, vücut ağırlığı artışına paralel olarak timus ağırlığı da artarak, 6. haftada maksimum düzeye ulaştı. Altıncı haftadan sonra timus ağırlığında azalma tespit edildi. İnvolüsyon belirtilerinden biri olan yağ hücreleri, ilk olarak altıncı haftada gözlendi. Artan yaşla birlikte, yağ doku miktarının artarak korteks içine girdiği ve yağ infıltrasyonu sonucu korteks parenşiminde azalma olduğu saptandı. Hassal cisimcikleri hem yoğunluk bakımından azaldı, hem de hacim bakımından küçüldü. Medulla'da bağdokunun belirginleştiği dikkati çekti. Sonuç olarak, timus'un doğumla birlikte gelişimini tamamladığı, puberteden sonra invole olduğu ve hayat boyunca fonksiyonel aktivitesini sürdürdüğü tespit edildi.

Macroscopic and light microscopic investigations on the postnatal development of thymus in the guinea pig

In this investigation, the morphological and ultra-structural variations occurred in thymuses of guinea pigs in postnatal period were examined. In the study, 10 groups, 1 day and 1, 2, 4, 6, 8, 12, 16, 20 and 24 weeks of groups consisting of 6 guinea pigs in each group (a total of 60 guinea pigs) were used. One day old guinea pigs had a completely developed thymus. Cortex and medulla were easily distinguished. In cortex, a number of small lymphocytes, lymphoblasts, epithelial reticulum cells were seen whereas in medulla, epithelial reticulum cells and Hassall's corpuscles were observed. After birth, thymus weight increased parallel to body weight and reached to the maximum level in the sixth week. After the sixth week, a decrease in thymus weight was determined. The lipid cells, one of the involution signs, were first seen in the sixth week. Together with the increasing age, increased amount of lipid tissue caused a decrease in cortex parenchyma as a result from entering the cortex and lipid infiltration. Hassall's corpuscles decreased both in view of number and in view of volume. In medulla, a marked connective tissue was observed. In conclusion, it was determined that thymus was completed its development at birth. It was also involuted after puberty and continued its functional activity during all life.

___

  • 1.Akgül A. Korelasyon analizi. Tıbbi araştırmalarda istatistiksel analiz teknikleri. Ankara. Yüksek Öğretim Kurulu Matbaası, 1997; 492-518.
  • 2.Blau JN. Histological changes and macrophage activity in the adult guinea pig thymus. Br J Exp Pathol 1971; 52(2): 142-146.
  • 3.Blin PC. Postnatal growth of the thymus and it's involution in domestic mammals. Recueil de Medicine Veterinaire 1973; 3: 301-314.
  • 4.Bodey B, Calvo W, Prummer O, Fliedner TM, Borysenko M. Development and histogenesis of the thymus in dog. Dev Comp Immunol 1987; 11(1): 227- 238.
  • 5.Brelinska R, Houben-Defresne MP, and Boniver J. Multicelluler complexes of thymocytes and different types of thymic stromal cells in the mouse. Cell Tissue Res 1986; 244: 673-679.
  • 6.Brelinska R, Kaczmarck E, Warchol J, Jaroszenski J. Distribution of different cell types within the rat thymus in the neonatal period of life. Cell Tissue Res 1985; 240: 473-478.
  • 7.Canfield P, Hemsley S, Connolly J. Histological and immunohistological study of the developing and involuting superficial cervical thymus in the koala. J Anat 1996; .189(1): 159-169.
  • 8.Cartee RE. Anatomic location and age-related changes in the chinchilla thymus. Am J Vet Res 1979; 40(4): 537-540.
  • 9.Chan C and Sainte-Marie G. Distrubution and morphology of the subcapsular and reticular cells of the ten-week old rat thymus. J Anat 1968; 102: 477- 491.
  • 10.Cordier AC. Ultrastructure of the thymus in "nude" mice. J Ultrastruct Res 1974; 47(20): 26-40.
  • 11.Crossmon GA. Modification of malloy's connective tissue stain with a discussion of the principles involved. AnatRec 1937; 69: 33-38.
  • 12.Evans HE, Christensen GC. Miller's Anatomy of the Dog. Second Ed. Philidelphia. WB Saunders Company, 1979; 461-462.
  • 13.Falakali B, Bellamy D. Cellular proliferation and density in relation to age involution of the rat thymus. Exp Geront., 1976; 11: 187-192.
  • 14.Hashimoto Y, Sugimura M. Histological and quantitative studies on the postnatal growth of the thymus and the bursa of fabricius of white pekin ducks. Jap J Vet Res 1976; 24: 65-76.
  • 15.Hoshino T, Takeda M, Abe K, Itı T. Early development of thymic lymphocytes in mice, studied by light and electron microscopy. Anat Rec 1968; 164: 47-66.
  • 16.Jarplid B. Dark reticular cells in the thymus of mice. ActaRadiol 1974; 13: 319-328.
  • 17.Jungueira LC, Carneira J, Kelley RO. Temel Histoloji 7. Baskı. Istanbul. Barış Kitapevi, 1993; 317-321.
  • 18.Kaman J. Insidence and morphology of the thymus in hairless guinea pigs. Acta Vet Brno 1987; 56(1-2): 19-30.
  • 19.Kendall MD. Thymic involution why bother? Immunol Today 1996; 17(10): 492-493.
  • 20.Köhnen P, Weiss L. An electron microscopic study of thymic corpuscles in the guinea pig and the mouse. Anat Rec 1964; 148: 29-58.
  • 21.Luna LG. Manuel of Histologic Staining Methods of the Armed Forces Institute of Pathology. Third Ed. Toronto, London. Me. Graw-Hill Book Company, 1968.
  • 22.Miller JFAP. Immunological function of the thymus. Lancet 1961; 2: 748-749.
  • 23.Nickel R, Schummer H, Serferle E. The ANATOMY of the Domestic Animals. Volume 3 Berlin-Hamburg 1981; 283-292.
  • 24.Nomina Histologica Veterinaria. Revised Second Ed. Revised by the International Commitee on Veterinary Gross Anatomical Nomenclature and Authorized by the Eighteenth General Assembly of the World Association of Veterinary Anatomists. Gent (Belgium). 1992.
  • 25.Pereira G, Clermont Y. Distribution of cell web- containing epithelial reticular cells in the rat thymus. AnatRec 1971; 169: 613-626.
  • 26.Poste ME. A quantitative study of mitotic activity in the guinea pig thymus; the importance of the corticomedullary junction. J Anat 1969; 104(3): 582- 583.
  • 27.Sainte-Marie G, Leblond CP. Cytological features and cellular migration in the cortex and medulla of thymus in the young adult rat. Blood 1964; 23: 275-299.
  • 28.Salinas FA, Smith LH, Goodman JW. Cell size distribution in the thymus as a function of age. J Cell Physiol 1972; 80(3): 339-45.
  • 29.Tanyolaç A. Özel Histoloji. Ankara. Yorum Basım Yayın Sanayi Ltd Şti, 1993; 41-44.
  • 30.Von Gaudecker B. Ultrastructure of the age-involuted aduit human thymus. Cell Tissue Res 1978; 186(3): 507-525.
  • 31.Wheater PR, Burkitt HG, Daniels VG. Functional Histology. A Text and Colour Atlas. Second Ed. Churchill Livingstone. 1987; 164-165.
  • 32.Yılmaz S, Girgin A, Dinç G, Özkan ZE. Postnatal dönemde köpek timus'u üzerine araştırmalar. FÜ Sağlık Bil Dergisi 1993; 7(2): 30-35.
  • 33.Young B, Heath W. Wheater's Functional Histology. A Text and Colour Atlas. Fourth Ed. Toronto. 2000;. 202-204.
  • 34.Zağyapan R. Fötal, Neonatal Genç, Ergin ve Yaşlı Kobaylarda Timus'un Evolusyon ve Envolusyonu ile bu Peryotlarda Gelen Değişikliklerin Makroskopik, Mikroskopik ve Histokimyasal Metotlarla Araştırılması. Bilim Uzmanlığı Tezi, Erzurum. 1975.