Mikroalgin Ön Arıtılmış Düzenli Depolama Sızıntı Suyunda Çoğaltılması

Bu çalışmanın amacı, ön arıtılmış katı atık Düzenli Depolama Sızıntı Suyu (DDSS)’nun Synechocystis sp. PCC 6803 türünün üretimi için uygunluğunu belirlemek ve PCC 6803’ün DDSS’den azot giderme verimliliğini ortaya koymaktır. PCC 6803, kesikli reaktörlerde değişik DDSS derişimlerinde (%20, %40, %60 ve %80) çoğaltılmış olup, atıksudan azot giderme verimleri ölçülmüştür. %20 oranında DDSS içeren reaktörde ortalama 318 mg AKM/L ve 1,816 optik yoğunluk bulunmuş olup bu değer ölçülen en yüksek biyokütle değerine karşılık gelmektedir. Artan DDSS derişimi ile beraber azot giderim verimliliği düşmüştür. %20, %40, %60 ve %80 oranında DDSS içeren ortamlardan amonyum azotu giderim verimi sırasıyla %28, %19, %14 ve %7’dir. %20, %40, %60 ve %80 oranında DDSS içeren ortamlardan TKN giderimi verimi sırasıyla %51, %44, %40 ve %20’dir. DDSS’deki ortofosfat miktarı oldukça düşük olup çoğalmadaki önemli kısıtlardan biri olacağı düşünülerek fosfat eklemeli çalışmalar da yapılmıştır.  Ortamdaki fosfat miktarı ideal besiyeri (BG-11)’ndeki fosfat miktarının 0,5, 1, 2 ve 4 katı olacak şekilde %20 DDSS içeren reaktörlerde çoğaltılmışlardır. Bu reaktörlerden elde edilen sonuçlar fosfor ilavesi olmayan reaktörlere benzerdir. Sonuçlar, PCC 6803’ün DSS üzerindeki büyümesini kısıtlayan etmenin DDSS içeriğindeki eksik diğer mineral maddelerden kaynaklanabileceğini göstermektedir.

___

  • 1. Pulz, O., Gross, W. (2004). Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology, 65(6), 635-648. 2. Li, Y., Horsman, M., Wu, N., Lan, C. Q., Dubois‐Calero, N. (2008). Biofuels from microalgae. Biotechnology Progress, 24(4), 815-820. 3. Brennan, L., Owende, P. (2010). Biofuels from microalgae—a review of technologies for production processing and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557-577. 4. Milledge, J. J. (2011). Commercial application of microalgae other than as biofuels: a brief review. Reviews in Environmental Science and Bio/Technology, 10(1), 31-41. 5. Ruiz, J., Olivieri, G., de Vree, J., Bosma, R., Willems, P., Reith, J. H., Barbosa, M. J. (2016). Towards industrial products from microalgae. Energy & Environmental Science, 9(10), 3036-3043. 6. Borowitzka, M. A. (2013). High-value products from microalgae—their development and commercialisation. Journal of Applied Phycology, 25(3), 743-756. 7. Priyadarshani, I., & Rath, B. (2012). Commercial and industrial applications of micro algae–A review. Journal of Algal Biomass Utilization, 3(4), 89-100. 8. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294-306. 9. Chen, G., Zhao, L., Qi, Y. (2015). Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review. Applied Energy, 137, 282-291. 10. Leite, G. B., Abdelaziz, A. E., Hallenbeck, P. C. (2013). Algal biofuels: challenges and opportunities. Bioresource Technology, 145, 134-141. 11. Delrue, F., Setier, P. A., Sahut, C., Cournac, L., Roubaud, A., Peltier, G., Froment, A. K. (2012). An economic, sustainability, and energetic model of biodiesel production from microalgae. Bioresource Technology, 111, 191-200. 12. Darzins, A., Pienkos, P., & Edye, L. (2010). Current status and potential for algal biofuels production. A report to IEA Bioenergy Task, 39. 13. Doucha, J., Straka, F., & Lívanský, K. (2005). Utilization of flue gas for cultivation of microalgae Chlorella sp. in an outdoor open thin-layer photobioreactor. Journal of Applied Phycology, 17(5), 403-412. 14. McGinn, P. J., Dickinson, K. E., Bhatti, S., Frigon, J. C., Guiot, S. R., O’Leary, S. J. (2011). Integration of microalgae cultivation with industrial waste remediation for biofuel and bioenergy production: opportunities and limitations. Photosynthesis Research, 109(1-3), 231-247. 15. Rawat, I., Kumar, R. R., Mutanda, T., Bux, F. (2011). Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Applied Energy, 88(10), 3411-3424. 16. Mallick, N. (2002). Biotechnological potential of immobilized algae for wastewater N, P and metal removal: a review. Biometals, 15(4), 377-390. 17. Pittman, J. K., Dean, A. P., Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102(1), 17-25. 18. Bilanovic, D., Holland, M., & Armon, R. (2012). Microalgal CO2 sequestering–modeling microalgae production costs. Energy Conversion and Management, 58, 104-109. 19. Li, W. W., Yu, H. Q., Rittmann, B. E. (2015). Chemistry: Reuse water pollutants. Nature, 528, 29-31. 20. Cuellar-Bermudez, S. P., Aleman-Nava, G. S., Chandra, R., Garcia-Perez, J. S., Contreras-Angulo, J. R., Markou, G., Parra-Saldivar, R. (2016). Nutrients utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater. Algal Research, 24, 438-449. 21. Correll, D. L. (1998). The role of phosphorus in the eutrophication of receiving waters: A review. Journal of Environmental Quality, 27(2), 261-266. 22. Anderson, D. M., Glibert, P. M., Burkholder, J. M. (2002). Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries, 25(4), 704-726. 23. Christenson, L., Sims, R. (2011). Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnology Advances, 29(6), 686-702. 24. Krasikov, V., Aguirre von Wobeser, E., Dekker, H. L., Huisman, J., Matthijs, H. C. (2012). Time‐series resolution of gradual nitrogen starvation and its impact on photosynthesis in the cyanobacterium Synechocystis PCC 6803”. Physiologia Plantarum, 145(3), 426-439. 25. de-Bashan, L. E., Bashan, Y. (2010). Immobilized microalgae for removing pollutants: review of practical aspects. Bioresource Technology, 101(6), 1611-1627. 26. Farré, M., Barceló, D. (2003). Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. Trends in Analytical Chemistry, 22(5), 299-310. 27. Aslan, S., Kapdan, I. K. (2006). Batch kinetics of nitrogen and phosphorus removal from synthetic wastewater by algae. Ecological Engineering, 28(1), 64-70. 28. Vermaas, W. (1996). Molecular genetics of the cyanobacterium Synechocystis sp. PCC 6803 Principles and possible biotechnology applications. Journal of Applied Phycology, 8, 263-273. 29. Machado, I.M.P., Atsumi, S. (2012). Cyanobacterial biofuel production. Journal of Biotechnology, 162, 50-56. 30. Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal, 54(4), 621-639. 31. Cai, T., Ge, X., Park, S. Y., Li, Y. (2013). Comparison of Synechocystis sp. PCC6803 and Nannochloropsis salina for lipid production using artificial seawater and nutrients from anaerobic digestion effluent. Bioresource Technology, 144, 255-260. 32. Kim, H. W., Vannela, R., Zhou, C., Rittmann, B. E. (2011). Nutrient acquisition and limitation for the photoautotrophic growth of Synechocystis sp. PCC6803 as a renewable biomass source. Biotechnology and Bioengineering, 108, 277-285. 33. Lagarde, D., Beuf, L., Vermaas, W. (2000). Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803. Applied and Environmental Microbiology, 66(1), 64-72. 34. Huang, L., McCluskey, M. P., Ni, H., LaRossa, R. A. (2002). Global gene expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light. Journal of Bacteriology, 184(24), 6845-6858. 35. Guedes, A. C., Amaro, H. M., Barbosa, C. R., Pereira, R. D., Malcata, F. X. (2011). Fatty acid composition of several wild microalgae and cyanobacteria, with a focus on eicosapentaenoic, docosahexaenoic and α-linolenic acids for eventual dietary uses. Food Research International, 44(9), 2721-2729. 36. Huang, L., McCluskey, M. P., Ni, H., LaRossa, R. A. (2002). Global gene expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light. Journal of Bacteriology, 184, 6845-6858. 37. Lu, X. (2010). A perspective: photosynthetic production of fatty acid-based biofuels in genetically engineered cyanobacteria. Biotechnology Advances, 28, 742-746. 38. Teruo, O., Kaplan A. (2003). Inorganic carbon acquisition systems in cyanobacteria." Photosynthesis Research, 77, 105-115. 39. Antal, T.K., Lindblad P. (2005). Production of H2 by sulphur‐deprived cells of the unicellular cyanobacteria Gloeocapsa alpicola and Synechocystis sp. PCC 6803 during dark incubation with methane or at various extracellular pH. Journal of Applied Microbiology, 98, 114-120. 40. Cho, S., Lee, N., Park, S., Yu, J., Luong, T.T., Oh, Y.K., Lee, T. (2013). Microalgae cultivation for bioenergy production using wastewaters from a municipal WWTP as nutritional sources. Bioresource Technology, 131, 515–520. 41. Singh, M., Reynolds, D.L., Das, K.C. (2011). Microalgal system for treatment of effluent from poultry litter anaerobic digestion. Bioresource Technology, 102, 10841–10848. 42. Wang, T., Yabar, H., Higano, Y. (2013). Perspective assessment of algae-based biofuel production using recycled nutrient sources: the case of Japan. Bioresource Technology, 128, 688–696. 43. Kapp, R., Stevens Jr, S. E., Fox, J. L. (1975). A survey of available nitrogen sources for the growth of the blue-green alga, Agmenellum quadruplicatum. Archives of Microbiology, 104(1), 135-138, 1975. 44. Flores, E., Herrero, A. (1994). “Assimilatory nitrogen metabolism and its regulation” in The molecular biology of cyanobacteria, (Ed) Donald A. Bryant., Kluwer Academic Publishers, Dordrecht, The Netherlands, 488-511. 45. Miller, S. R., Martin, M., Touchton, J., Castenholz, R. W. (2002). Effects of nitrogen availability on pigmentation and carbon assimilation in the cyanobacterium Synechococcus sp. strain SH-94–5. Archives of Microbiology, 177(5), 392-400. 46. Flores, E., and A. Herrero. (2005). Nitrogen assimilation and nitrogen control in cyanobacteria. Biochemical Society Transactions, 33(1), 164-167. 47. Krasikov, V., Aguirre von Wobeser, E., Dekker, H. L., Huisman, J., Matthijs, H. C. (2012). Time‐series resolution of gradual nitrogen starvation and its impact on photosynthesis in the cyanobacterium Synechocystis PCC 6803. Physiologia Plantarum, 145(3), 426-439. 48. Krasikov, V. (2012). Dynamic changes in gene expression of the cyanobacterium Synechocystis sp. PCC 6803 in response to nitrogen starvation. PhD thesis, University of Amsterdam, Amsterdam, Netherlands. 49. Wang, H. L., Postier, B. L., Burnap, R. L. (2004). Alterations in global patterns of gene expression in Synechocystis sp. PCC 6803 in response to inorganic carbon limitation and the inactivation of ndhR, a LysR family regulator. Journal of Biological Chemistry, 279(7), 5739-5751. 50. Yu, Y., You, L., Liu, D., Hollinshead, W., Tang, Y. J., Zhang, F. (2013). Development of Synechocystis sp. PCC 6803 as a phototrophic cell factory. Marine Drugs, 11(8), 2894-2916.
Fırat Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1308-9072
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1987
  • Yayıncı: FIRAT ÜNİVERSİTESİ