Pıhtı Birikiminin Abdominal Aort Anevrizması Yırtılma Riskine Etkisinin Mühendislik Yöntemleriyle İncelenmesi

Abdominal aort anevrizması (AAA) karın bölgesinde yer alan aort damarının genişlemesine bağlı olarak oluşan bir kardiyovasküler hastalıktır. Tedavi edilmeyen AAA yapıları büyümeye devam etmekte ve yırtılma riski oluşturmaktadır. AAA yırtılması acil bir sağlık durumu olup, yırtılma vakalarının yarıdan fazlası ölümle sonuçlanmaktadır. Bu nedenle erken safhada AAA yapılarını teşhis edebilmek önem teşkil etmektedir. Yüksek seviyede genişleme olduğunda AAA içinde pıhtı yapıları oluşabilmektedir. Bu çalışmada, AAA içindeki pıhtı yapılarının yırtılma riski üzerindeki etkisi irdelenmiştir. Bu amaçla idealize edilmiş bir AAA modeli oluşturulmuştur. AAA modeli katı-sıvı etkileşimi göz önüne alınarak hesaplamalı akışkanlar dinamiği (HAD) analizleri ile incelenmiştir. Gerçekleştirilen analizler sonucunda pıhtı olan ve olmayan durumlar için farklı hemodinamik koşulların oluştuğu gözlenmiştir. AAA oluşumunun damar duvarı üzerinde oluşan mekanik gerilmeleri azalttığı görülmüştür. Yüksek seviyede pıhtı içeren AAA modelinin damar gerilme seviyeleri, pıhtı içermeyen AAA modeline kıyasla %12 daha düşüktür. Elde edilen sonuçlar, pıhtı yapılarının AAA hemodinamiğine ve damar duvarındaki mekanik gerilmelere olan etkisinin anlaşılmasına katkı sağlamıştır.

Investigation of the Effect of Clot Deposition on the Risk of Abdominal Aortic Aneurysm Rupture by Engineering Methods

Abdominal aortic aneurysm (AAA) is a cardiovascular disease caused by enlargement of the abdominal aorta. Untreated AAA structures continue to grow and pose a risk of rupture. AAA rupture is a health emergency, with more than half of ruptures resulting in death. Therefore, it is important to be able to diagnose AAA structures at an early stage. When there is a high level of enlargement, clot structures can form within the AAA. In this study, the effect of clot structures on the risk of AAA rupture is examined. For this purpose, an idealized AAA model is created. The AAA model is investigated by performing computational fluid dynamics (CFD) analysis considering the fluid-structure interaction. As a result, different hemodynamic conditions occurred for the cases with and without clots. AAA formation reduced the mechanical stresses on the vessel wall. The vascular stresses on the AAA wall are 12% lower for the models with high levels of clot. The results obtained contributed to the understanding of the effect of clot structures on AAA hemodynamics and mechanical stresses on the AAA wall.

___

  • Bengtsson H, Bergqvist D. Ruptured abdominal aortic aneurysm: a population-based study. J Vasc Surg 1993; 18(1): 74-80.
  • Limet R, Sakalihasan N, Defawe OD. Abdominal aortic aneurysm. Lancet 2005; 365(9470): 1577-1589.
  • Kontopodis N, Metaxa E, Papaharilaou Y, Tavlas E, Tsetis D, Ioannou C. Advancements in identifying biomechanical determinants for abdominal aortic aneurysm rupture. Vascular 2014; 23(1): 65-77.
  • Thompson RW. Aneurysm treatments expand. Nat Med 2005; 11(12): 1279-1281.
  • Hafez H, Druce PS, Ashton HA. Abdominal aortic aneurysm development in men following a “normal” aortic ultrasound scan. Eur J Vasc Endovasc Surg 2008; 36(5): 553-558.
  • Salman HE, Ramazanli B, Yavuz MM, Yalcin HC. Biomechanical investigation of disturbed hemodynamics-induced tissue degeneration in abdominal aortic aneurysms using computational and experimental techniques. Front Bioeng Biotechnol 2019; 7: 111.
  • Chaikof EL, Brewster DC, Dalman RL, Makaroun MS, Illig KA, Sicard GA, Timaran CH, Upchurch Jr GR ve diğerleri. The care of patients with an abdominal aortic aneurysm: the Society for Vascular Surgery practice guidelines. J Vasc Surg 2009; 50(4): 2-49.
  • Darling RC, Messina CR, Brewster DC, Ottinger LW. Autopsy study of unoperated abdominal aortic aneurysms: the case for early resection. Circulation 1977; 56(3): 161–164.
  • Peattie RA, Asbury CL, Bluth EI, Riehle TJ. Steady flow in models of abdominal aortic aneurysms. Part II: Wall stresses and their implication for in vivo thrombosis and rupture. J Ultrasound Med 1996; 15(10): 689–696.
  • Arzani A, Shadden SC. Characterizations and correlations of wall shear stress in aneurysmal flow. J Biomech Eng 2016; 138(1): 014503.
  • Di Martino ES, Guadagni G, Fumero A, Ballerini G, Spirito R, Biglioli P, Redaelli A. Fluid–structure interaction within realistic three-dimensional models of the aneurysmatic aorta as a guidance to assess the risk of rupture of the aneurysm. Med Eng Phys 2001; 23(9): 647-655.
  • Erhart P, Grond-Ginsbach C, Hakimi M, Lasitschka F, Dihlmann S, Böckler D, Hyhlik-Dürr A. Finite element analysis of abdominal aortic aneurysms: predicted rupture risk correlates with aortic wall histology in individual patients. J Endovasc Ther 2014; 21(4): 556-564.
  • Cong Y, Wang L, Liu X. A numerical study of fluid-structure coupled effect of abdominal aortic aneurysm. Biomed Mater Eng 2015; 26(1): 245-255.
  • Canchi T, Saxena A, Ng EYK, Pwee EC, Narayanan S. Application of fluid–structure interaction methods to estimate the mechanics of rupture in asian abdominal aortic aneurysms. Bionanoscience 2018; 8(4): 1035-1044.
  • Scotti CM, Finol EA. Compliant biomechanics of abdominal aortic aneurysms: a fluid–structure interaction study. Comput Struct 2007; 85: 1097-1113.
  • Doyle BJ, Callanan A, Burke PE, Grace PA, Walsh MT, Vorp DA, McGloughlin TM. Vessel asymmetry as an additional diagnostic tool in the assessment of abdominal aortic aneurysms. J Vasc Surg 2009; 49(2): 443-454.
  • Rosero EB, Peshock RM, Khera A, Clagett P, Lo H, Timaran CH. Sex, race, and age distributions of mean aortic wall thickness in a multiethnic population-based sample. J Vasc Surg 2011; 53(4): 950-957.
  • Shang EK, Nathan DP, Woo EY, Fairman RM, Wang GJ, Gorman RC, Gorman III JH, Jackson BM. Local wall thickness in finite element models improves prediction of abdominal aortic aneurysm growth. J Vasc Surg 2015; 61(1): 217-223.
  • Scotti CM, Jimenez J, Muluk SC, Finol EA. Wall stress and flow dynamics in abdominal aortic aneurysms: finite element analysis vs. fluid–structure interaction. Comput Methods Biomech Biomed Eng 2008; 11(3): 301-322.
  • Martufi G, Di Martino ES, Amon CH, Muluk SC, Finol EA. Three-dimensional geometrical characterization of abdominal aortic aneurysms: image-based wall thickness distribution. J Biomech Eng 2009; 131(6).
  • Drewe CJ, Parker LP, Kelsey LJ, Norman PE, Powell JT, Doyle BJ. Haemodynamics and stresses in abdominal aortic aneurysms: A fluid-structure interaction study into the effect of proximal neck and iliac bifurcation angle. J Biomech 2017; 60, 150-156.
  • Qiu Y, Yuan D, Wen J, Fan Y, Zheng T. Numerical identification of the rupture locations in patient-specific abdominal aortic aneurysmsusing hemodynamic parameters. Comput Methods Biomech Biomed Eng 2018; 21(1): 1-12.
  • Arslan AC, Salman HE. Effect of Intraluminal Thrombus Burden on the Risk of Abdominal Aortic Aneurysm Rupture. J Cardiovasc Dev Dis 2023; 10(6).
  • Soudah E, Ng EYK, Loong TH, Bordone M, Pua U, Narayanan S. CFD modelling of abdominal aortic aneurysm on hemodynamic loads using a realistic geometry with CT. Comput Math Methods Med 2013.
  • Poelma C, Watton PN, Ventikos Y. Transitional flow in aneurysms and the computation of haemodynamic parameters. J R Soc Interface 2015; 12(105): 20141394.
  • Meyrignac O, Bal L, Zadro C, Vavasseur A, Sewonu A, Gaudry M, Saint-Lebes B, De Masi M ve diğerleri. Combining volumetric and wall shear stress analysis from CT to assess risk of abdominal aortic aneurysm progression. Radiology 2020; 295(3): 722-729.
  • Khanafer KM, Bull JL, Upchurch Jr GR, Berguer R. Turbulence significantly increases pressure and fluid shear stress in an aortic aneurysm model under resting and exercise flow conditions. Ann Vasc Surg 2007; 21(1): 67-74.
  • Philip NT, Patnaik BSV, Jayanand SB. Fluid Structure Interaction study in model abdominal aortic aneurysms: Influence of shape and wall motion. Int J Numer Methods Biomed Eng 2020; 37(3): e3426.
  • Jahangiri M, Saghafian M, Sadeghi MR. Numerical simulation of non-Newtonian models effect on hemodynamic factors of pulsatile blood flow in elastic stenosed artery. J Mech Sci Technol 2017; 31(2): 1003-1013.
  • Raghavan ML, Vorp DA. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J Biomech 2000; 33(4): 475-482.
  • Raut SS, Jana A, De Oliveira V, Muluk SC, Finol EA. The effect of uncertainty in vascular wall material properties on abdominal aortic aneurysm wall mechanics. In Computational Biomechanics for Medicine. New York, NY, USA: Springer, 2014; pp. 69-86.
  • Reeps C, Gee M, Maier A, Gurdan M, Eckstein HH, Wall WA. The impact of model assumptions on results of computational mechanics in abdominal aortic aneurysm. J Vasc Surg 2010; 51(3): 679-688.
  • Wilson JS, Virag L, Di Achille P, Karšaj I, Humphrey JD. Biochemomechanics of intraluminal thrombus in abdominal aortic aneurysms. J Biomech Eng 2013; 135(2).
  • Geest JPV, Sacks MS, Vorp DA. A planar biaxial constitutive relation for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms. J Biomech 2006; 39(13): 2347-2354.
  • Chandra S, Raut SS, Jana A, Biederman RW, Doyle M, Muluk SC, Finol EA. Fluid-structure interaction modeling of abdominal aortic aneurysms: the impact of patient-specific inflow conditions and fluid/solid coupling. J Biomech Eng 2013; 135(8).
Fırat Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1308-9072
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1987
  • Yayıncı: FIRAT ÜNİVERSİTESİ