Farklı Şiddetlerde Meydana Gelen Güneş Aktivitesinin GPS-PPP Doğruluğu Üzerindeki Etkisinin Bölgesel olarak Araştırılması

Son yıllarda GNSS (Global Navigation Satellite System) topluluğu içerisinde, (Hassas Nokta Konumlama (Precise Point Positioning, PPP) yöntemi oldukça ilgi çekici bir konu haline gelmiştir. PPP tekniği ile, herhangi bir referans istasyonuna ihtiyaç duymadan yalnızca tek bir alıcı kullanarak yüksek konum doğruluğuna erişmek mümkündür. Ancak birçok hata kaynağı PPP hassasiyetini doğrudan ya da dolaylı olarak etkilemektedir. Bu çalışmada, Güneş’te meydana gelen farklı şiddetlerdeki aktivitelerin GPS-PPP doğruluğu üzerindeki etkisi bölgesel olarak araştırılmıştır. Bu amaç doğrultusunda kutup, orta ve ekvatoral enlem bölgesinden olmak üzere Uluslararası GNSS Servisi (IGS) ağına ait üç istasyon seçilerek güneşte meydana gelen aktivite şiddetine göre GPS-PPP doğruluğundaki değişim izlenmiştir. Yaklaşık 11 yıllık güneş döngüsü dikkate alınarak 2000-2018 yılları arasındaki minimum, orta ve maksimum aktivite dönemlerine ait 60’ar günlük GPS verileri kullanılmıştır. GPS verileri, Güneşte meydana gelen aktivite değişimini tam olarak yansıtabilmesi için gündüz vaktine denk gelen saat 10:00-18:00 aralığındaki 8 saatlik kısa veri oturumlarına bölünmüştür. Elde edilen tüm veri setleri NASA/JPL'nin GIPSY/OASIS II v6.4 yazılımının Hassas Nokta Konumlama (PPP) modülü kullanılarak analiz edilmiştir. Söz konusu üç farklı aktivite dönemi ve üç farklı bölgede gözlenen GPS-PPP doğruluğundaki değişimler karşılaştırılmıştır. Karşılaştırmalar sonucunda, güneşte meydana gelen patlamalar arttıkça GPS-PPP doğruluğunun azaldığı ve bu durumdan en fazla ekvatoral enlem bölgesinin etkilendiği gözlenmiştir.

A Regional Investigation of the Effect of Solar Activity of Different Intensities on GPS-PPP Accuracy

In recent years, Precise Point Positioning (PPP) has become a very interesting topic within the GNSS (Global Navigation Satellite System) community. With the PPP technique, it is possible to achieve high position accuracy using only a single receiver without the need for any reference station. However, many sources of error directly or indirectly affect PPP accuracy. In this study, the impact of different intensities of solar activity on GPS-PPP accuracy was investigated regionally. For this purpose, three stations belonging to the International GNSS Service (IGS) network were selected from the polar, mid-latitude and equatorial latitudes and the change in GPS-PPP accuracy was monitored according to the intensity of solar activity. Considering the solar cycle period of approximately 11 years, 60 days of GPS data for the minimum, medium and maximum activity periods between 2000-2018 were used. The GPS data were divided into short 8-hour data sessions between 10:00-18:00, which coincides with the daytime, to fully reflect the changes in solar activity. All data sets were analyzed using the Precision Point Positioning (PPP) module of NASA/JPL's GIPSY/OASIS II v6.4 software. The changes in GPS-PPP accuracy observed during the three different periods of activity and in three regions were compared. As a result of the comparisons, it was observed that the GPS-PPP accuracy decreases as the intensity of solar activity increases, with the equatorial latitude region being most affected.

___

  • Anderle, R J. Satellite Doppler Positioning: Proceedings, International Geodetic Symposium, October 12-14, 1976. The Symposium, 1976.
  • Zumberge J F, Heflin M B, Jefferson D C, Watkins M M, Webb F H. Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research: Solid Earth, vol. 102, no. B3, pp. 5005–5017, 1997, doi: 10.1029/96JB03860.
  • Héroux P, Kouba J. GPS precise point positioning using IGS orbit products. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, vol. 26, no. 6, pp. 573–578, Jan. 2001, doi: 10.1016/S1464-1895(01)00103-X.
  • Seepersad G, Bisnath S. Challenges in Assessing PPP Performance. Journal of Applied Geodesy, vol. 8, no. 3, pp. 205–222, Sep. 2014, doi: 10.1515/jag-2014-0008.
  • Shi j, Yuan X, Cai Y, Wang G. GPS real-time precise point positioning for aerial triangulation. GPS Solut, vol. 21, no. 2, pp. 405–414, Apr. 2017, doi: 10.1007/s10291-016-0532-2.
  • Yigit C O, Gurlek E. Experimental testing of high-rate GNSS precise point positioning (PPP) method for detecting dynamic vertical displacement response of engineering structures. Geomatics, Natural Hazards and Risk, vol. 8, no. 2, pp. 893–904, Dec. 2017, doi: 10.1080/19475705.2017.1284160.
  • Choy S, Bisnath S, Rizos C. Uncovering common misconceptions in GNSS Precise Point Positioning and its future prospect. GPS Solut, vol. 21, no. 1, pp. 13–22, Jan. 2017, doi: 10.1007/s10291-016-0545-x.
  • Hernández H, Dollase D, Fernàndez M G, Perez R O, García A R. Precise ionospheric electron content monitoring from single-frequency GPS receivers. GPS Solut, vol. 22, no. 4, p. 102, Jul. 2018, doi: 10.1007/s10291-018-0767-1.
  • Krietemeyer A, Veldhuis M T, Marel H, Realini E, Giesen, N. Potential of Cost-Efficient Single Frequency GNSS Receivers for Water Vapor Monitoring. Remote Sensing, vol. 10, no. 9, Art. no. 9, Sep. 2018, doi: 10.3390/rs10091493.
  • Erol S, Alkan R M, Ozulu İ M, Ilçi V. Impact of different sampling rates on precise point positioning performance using online processing service. Geo-spatial Information Science, vol. 24, no. 2, pp. 302–312, Apr. 2021, doi: 10.1080/10095020.2020.1842811.
  • Vadakke S V, Aquino M, Marques H A, Moraes A. Mitigation of ionospheric scintillation effects on GNSS precise point positioning (PPP) at low latitudes. J Geod, vol. 94, no. 2, p. 15, Jan. 2020, doi: 10.1007/s00190-020-01345-z.
  • Collins P, Bisnath S, Lahaye F, Héroux P. Undifferenced GPS Ambiguity Resolution Using the Decoupled Clock Model and Ambiguity Datum Fixing. Navigatıon, vol. 57, no. 2, pp. 123–135, 2010, doi: 10.1002/j.2161-4296.2010.tb01772.x.
  • Davis J L, Herring T A, Shapiro I, Rogers A E E, Elgered G. Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length. Radio Science, vol. 20, no. 6, pp. 1593–1607, 1985, doi: 10.1029/RS020i006p01593.
  • Bock O, Doerflinger E. Atmospheric modeling in GPS data analysis for high accuracy positioning. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, vol. 26, no. 6, pp. 373–383, Jan. 2001, doi: 10.1016/S1464-1895(01)00069-2.
  • Olynik M C. Temporal Characteristics of GPS Error Sources and Their Impact on by Analysis. Msc, Calgary University, Calgary, 2002.
  • Hofmann B, Wellenhof H, Lichtenegger H, Collins J. Global Positioning System: Theory and Practice. Springer Science & Business Media, 2012.
  • EUREF Permanent GNSS Network. URL adres: http://www.epncb.oma.be/_productsservices/troposphere/zpd_timeseries_station.php?station=ISTA00TUR. (Erişim Tarihi: 27.10.2022).
  • Saracoglu A, Sanli D U. Accuracy of GPS positioning concerning Köppen-Geiger climate classification. Measurement, vol. 181, p. 109629, Aug. 2021, doi: 10.1016/j.measurement.2021.109629.
  • Saracoglu A, Sanli D U. ‘Effect of meteorological seasons on the accuracy of GPS positioning’, Measurement, vol. 152, p. 107301, Feb. 2020, doi: 10.1016/j.measurement.2019.107301.
  • Sukcharoen T, Weng J, Charoenkalunyuta T, Wu F. Comparison of Ionosphere at Middle Latitude Zone during Solar Maximum and Solar Minimum. International Journal of Engineering and Technology, vol. 9, pp. 262–268, Jan. 2017, doi: 10.7763/IJET.2017.V9.982.
  • Wu C C, Fry C D, Liu J Y, Liou K, Tseng C L. Annual TEC variation in the equatorial anomaly region during the solar minimum: September 1996–August 1997. Journal of Atmospheric and Solar-Terrestrial Physics, vol. 66, no. 3, pp. 199–207, Feb. 2004, doi: 10.1016/j.jastp.2003.09.017.
  • Bosy J, Figurski M, Wielgosz P. A strategy for GPS data processing in a precise local network during high solar activity. GPS Solutions, vol. 7, no. 2, pp. 120–129, Aug. 2003, doi: 10.1007/s10291-003-0052-8.
  • Hansson A. Solar Cycles and the Accuracy and Precision of GNSS Measurements. MSc, Department of Urban Planning and Environment KTH, Divison of Geodesy and Geoinformatics, Stockholm, 2013.
  • Fortes L P S, Lin T, Lachapelle G. Effects of the 2012–2013 solar maximum on GNSS signals in Brazil. GPS Solut, vol. 19, no. 2, pp. 309–319, Apr. 2015, doi: 10.1007/s10291-014-0389-1.
  • Kumar S. Ionospheric variability during quiet and disturb geomagnetic conditions for low and high solar activity year. Indian J Phys, vol. 96, no. 6, pp. 1635–1641, May 2022, doi: 10.1007/s12648-021-02124-y.
  • Seif A, Panda S K. Ionospheric scintillation characteristics from GPS observations over Malaysian region after the 2011 Valentine’s day solar flare. Journal of Applied Geodesy, vol. 17, no. 1, pp. 79–90, Jan. 2023, doi: 10.1515/jag-2022-0053.
  • Yousuf M, Dashora N, Sridhar M, Dutta G. Long-term impact of ionospheric scintillations on kinematic precise point positioning: seasonal and solar activity dependence over Indian low latitudes. GPS Solut, vol. 27, no. 1, p. 40, Dec. 2022, doi: 10.1007/s10291-022-01378-1.
  • Pulinets M S, Budnikov P A, Pulinets S A. Global Ionospheric Response to Intense Variations of Solar and Geomagnetic Activity According to the Data of the GNSS Global Networks of Navigation Receivers. Geomagn. Aeron., vol. 63, no. 2, pp. 172–185, Apr. 2023, doi: 10.1134/S0016793222600898.
  • Scripps Orbit and Permanent Array Center. http://sopac.ucsd.edu/dataBrowser.shtml (Erişim Tarihi: 14.10.2022).
  • Bertiger W, Desai S D, Haines B, et al. Single receiver phase ambiguity resolution with GPS data. J Geod 84, 327–337 (2010). https://doi.org/10.1007/s00190-010-0371-9
  • Altamimi Z, Collilieux X, Métivier L. ITRF2008: an improved solution of the international terrestrial reference frame. J Geod, vol. 85, no. 8, pp. 457–473, Aug. 2011, doi: 10.1007/s00190-011-0444-4.
  • Boehm J. Werl B, Schuh H. Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data. Journal of Geophysical Research: Solid Earth, vol. 111, no. B2, 2006, doi: 10.1029/2005JB003629.
  • Lyard F, Lefevre F, Letellier T, Francis O. Modelling the global ocean tides: modern insights from FES2004, Ocean Dynamics, vol. 56, no. 5, pp. 394–415, Dec. 2006, doi: 10.1007/s10236-006-0086-x.
  • Kahveci̇ M, Ali̇oğlu D, Çeti̇n G. Tek Frekanslı Gnss Alıcılarında Kullanılan İyonosferik Etki Düzeltme Modellerinin Karşılaştırılması. Konjes. vol. 9, no. 2, Art. no. 2, Jun. 2021, doi: 10.36306/konjes.849391.
  • Bilitza D. International Reference Ionosphere 2000. Radio Science, vol. 36, no. 2, pp. 261–275, 2001, doi: 10.1029/2000RS002432.
  • Groves K M, Basu S, Quinn J M, Pedersen T R, Falinski K, Brown A, Ning P. A Comparison of GPS Performance in a Scintillation Environment at Ascension Island. p. 9, Sep. 2000.