Laminar Dönen Boru Akışında Isı Transferinin İncelenmesi

Bu çalışmada, silindirik borunun çeşitli hızlarda döndürülmesi ile akışkana verilen dönme etkisinin ısı transferi, sürtünme faktörü ve etkinlik değerleri üzerinde meydana getirdiği değişimler deneysel olarak araştırılmıştır. Deneyler Reynolds sayısının 500 ile 1800 değerleri arasında ve silindirdik borunun farklı devirlerde döndürülmesiyle gerçekleştirilmiştir. Yapılan deneyler sonucunda, dönme hızındaki artış ile Nusselt sayısı, sürtünme faktörü ve etkinlik değerlerinde artış olduğu görülmüştür. Ayrıca laminar akışta gerçekleştirilen akış gözleme deneyleri ile borunun dönme hızındaki artışın, akışkan üzerine yaptığı etkiler görüntülenmiştir. Bu görüntülerden; laminar akış karakteristiği olan çizgi şeklindeki doğrusal akışın, dönme hızındaki artış ile birlikte türbülanslı akış karakteristiği kazandığı görülmüştür. Elde edilen sonuçların literatürle uyum içinde olduğu sonucu elde edilmiştir.

___

  • [1] Pourahmad S, Pesteei SM. Effectiveness-NTU analyses in a double tube heat exchanger equipped with wavy strip considering various angles. Energy Convers Manage 2016; 123:462-469.
  • [2] Du J, Hong Y, Wang S, Ye WB, Huang SM. Experimental thermal and flow characteristics in a traverse corrugated tube fitted with regularly spaced modified wire coils. Int J Therm Sci 2018; 133: 330-340.
  • [3] Muthusamy C, Vivar M, Skryabin I, Srithar K. Effect of conical cut-out turbulators with internal fins in a circular tube on heat transfer and friction factor. Int Commun Heat Mass Transfer 2013; 44: 64-68.
  • [4] Chompookham T, Chingtuaythong W, Chokphoemphun S. Influcnce of a novel serrated wire coil insert on thermal characteristics and air flow behavior in a tubular heat exchanger. Int J Therm Sci 2022; 171: 107184.
  • [5] Singh P, Pandit J, Ekkad SV. Characterization of heat transfer enhancement and frictional losses in a two-pass square duct featuring unique combinations of rib turbulators and cylindrical dimples. Int J Heat Mass Transfer 2017; 106: 629-647.
  • [6] Ayub ZH, Yang D, Khan TS, Al-Hajri E, Ayub AH. Performance characteristics of a novel shell and tube heat exchanger with shell side interstitial twisted tapes for viscous fluids application. Appl Therm Eng 2018; 134: 248-255.
  • [7] Shirvan KM, Mamourian M, Esfahani JA.Experimental investigation on thermal performance and economic analysis of cosine wave tube structure in a shell and tube heat exchanger. Energy Convers Manage 2018; 175: 86-98.
  • [8] Ham J, Shin Y, Cho H. Theoretical investigation of the influence of pipe diameter and exit channel widht in welded plate heat exchanger on heat exchanger performance. Heat Mass Transfer 2020; 56: 759-771.
  • [9] Fan A, Deng J, Guo J, Liu W. A numerical study on thermo-hydraulic characteristics of turbulent flow in a circular tube fitted with conical strip inserts. Appl Therm Eng 2011; 31: 2819-2828.
  • [10] Jasinski PB. Numerical study of thermo-hydraulic characteristics in a circular tube with ball turbulators. Part 3: Thermal performance analysis. Int J Heat Mass Transfer 2017; 107: 1138-1147.
  • [11] Ma JF, Shen XR, Zhang MK, Zhang BZ. Laminar developing flow in the entrance region of rotating curved pipes. J Hydrodyn 2006; 18(4): 418-423.
  • [12] Petrakis MA. Flow characteristics in a heated rotating straight pipe. Int J Heat Mass Transfer 1998; 41: 4385-4392.
  • [13] Lei U, Yang ACY. Convective heat transfer of the flow through a rotating circular straight pipe. Chin J Mech 2001; 17(2): 79-91.
  • [14] Ling J, Cao Y. Closed-form analytical solutions for radially rotating miniature high-temperature heat pipes including non-condensable gas effects. Int J Heat Mass Transfer 2000; 43: 3661-3671.
  • [15] Turgut E, Durmuş A. Dönen borudaki türbülanslı iç akışın incelenmesi. 17. Ulusal Isı Bilimi ve Tekniği Kongresi, 24-27 Haziran 2009, Cumhuriyet Üniversitesi, Sivas. pp. 68-72.
  • [16] Cloos FJ, Zimmermann AL, Pelz PF. Two turbulent flow regimes at the inlet of a rotating pipe. Eur J Mech B Fluids 2017; 61: 330-335.
  • [17] Taamneh Y. Thermal analysis of gas turbine disk integrated with rotating heat pipes. Case Stud Therm Eng 2017; 10: 335-342.
  • [18] Shi X, Yin B, Chen G, Zhang X, Mei X. Numerical study on two-phase flow and heat transfer characteristics of loop rotating heat pipe for cooling motorized spindle. Appl Therm Eng 2021; 192: 116927.
  • [19] Koca T, Cıtlak A. Design and analysis of double-pipe heat exchanger using both helical and rotating inner pipe. Therm Sci 2021; 25(2B): 1545-1559.
  • [20] Wang H, Bao Y, Liu M, Zhu S, Du X, Hou Y. Experimental study on dynamic characteristics of cylindrical horizontal axially rotating heat pipe. Appl Therm Eng 2022; 209: 118248.
  • [21] Kikuyama K, Murakami M, Nishibori K, Maeda K. Flow in an axially rotating pipe, Bulletin of the JSME 1983; 26(114): 506–513.
  • [22] Pedley TJ. On the instability of viscous flow in a rapidly rotating pipe. Journal of Fluid Mechanics 1969; 35: 97-115.
  • [23] Song F, Ewing D, Ching CY. Experimental investigation on the heat transfercharacteristics of axial rotating heat pipes. Int J Heat Mass Transfer 2004; 47: 4721-4731.
  • [24] Ouali SS, Saury D, Harmand S, Phillipart O, Laloy D. Convective heat transfer inside a rotating cylinder with an axial air flow. Int J Therm Sci 2006; 45: 1166-1178.
  • [25] Mori Y, Nakayama W. Forced convective heat transfer in a straight pipe rotating around a parallel axis. Int J Heat Mass Transfer 1967; 10(9): 1179-1194.
  • [26] Ling J, Cao Y, Chang WS. Analyses of radially rotating high-temperature heat pipes for turbomachinery applications. ASME J Eng Gas Turbines Power 1999; 121: 306-312.
  • [27] Ismail KAR, Miranda RF. Two-dimensional axisymmetrical model for a rotating porous wicked heat pipe, Appl Therm Sci 1997; 17: 135-155.
  • [28] Çengel AY, Ghajar AJ. Heat and Mass Transfer -FUNDAMENTALS & APPLICATIONS. 6th ed. New York, NY, USA. McGraw Hill, 2020.
  • [29] Kays WM, London AL. Compact FHeat Exchangers. 3rd ed. New York, McGraw-Hill, 1984.