Rezistif Süperiletken Arıza Akımı Sınırlayıcı MATLAB-Simulink Modeli ve Uygulaması-Son Hali

Günümüzde, nüfus artışı, yerleşim yerlerinin ve endüstriyel alanların genişlemesi ve teknolojinin gelişmesiyle birlikte elektrik tüketiminde önemli bir artış görülmektedir. Buna paralel olarak üretim kapasitelerinin de artması ile elektrik güç sistemlerinde çeşitli sebeplerle meydana gelen arızaların sebep olduğu yüksek akım seviyeleri, sistemdeki elemanlar için tehlikeli durumlar oluşturmaktadır. Arıza akımlarının sınırlandırılması, bu akımların zorlayıcı termal, dinamik ve elektromanyetik etkilerinden sistemin ve sistem elemanlarının korunmasını sağlar. Bu çalışmada, modern arıza akımı sınırlandırma yöntemlerinden biri olan Rezistif Süperiletken Arıza Akımı Sınırlayıcıların (R-SFCL) yapısı ve çalışma prensibi incelenmiştir. Ayrıca, bir R-SFCL tasarımı yapılmış ve oluşturulan deney sisteminde arızalar gerçekleştirilerek elde edilen gerçek veriler ile MATLAB/Simulink’de gerçekleştirilen simülasyon sonuçları karşılaştırılmıştır.

Resistive Fault Current Limiter Design and Realization of Prototype

Today, there is a significant increase in electricity consumption with population growth, expansion of residential areas and industrial areas, and the development of technology. Parallel to this, with the increase in production capacity, high current levels caused by faults in the system for various reasons create dangerous situations for the system and the elements in the system. Limitation of fault currents provides protection of the system and system elements from the compelling thermal, dynamic and electromagnetic effects of these currents. In this study, the structure and working principle of Resistive Superconducting Fault Current Limiters (R-SFCL), which is one of the modern fault current limiting methods, are investigated. In addition, the real data obtained by performing the R-SFCL design in the laboratory environment and performing the faults in the created experimental system, and the simulation results performed with MATLAB/Simulink are compared.

___

  • [1] E. M. Leung, “Superconducting fault current limiters,” IEEE Power Eng. Rev., vol. 20, no. 8, pp. 15–18, 30, 2009, doi: 10.1109/39.857449.
  • [2] H. Seyedi and B. Tabei, “Appropriate Placement of Fault Current Limiting Reactors in Different HV Substation Arrangements,” Circuits Syst., vol. 03, no. 03, pp. 252–262, 2012, doi: 10.4236/cs.2012.33035.
  • [3] C. Method, “Numerical Study on Transient State of Inductive Fault Current Limiter Based on Field-Circuit,” 2019.
  • [4] P. Ju, T. Ma, J. Zhang, Y. Xu, and S. Dai, “Influence of Interface Resistance on Current Distribution and Inhomogeneity Effect on Quench Characteristics in REBCO Coated Conductor,” IEEE Trans. Appl. Supercond., vol. 32, no. 1, 2022, doi: 10.1109/TASC.2021.3132011.
  • [5] B. Xiang et al., “A CO 2 /O 2 Mixed Gas DC Circuit Breaker with Superconducting Fault Current-Limiting Technology,” IEEE Trans. Power Deliv., vol. 35, no. 4, pp. 1960–1967, 2020, doi: 10.1109/TPWRD.2019.2957499.
  • [6] B. Xiang et al., “DC Interrupting With Self-Excited Oscillation Based on the Superconducting Current-Limiting Technology,” IEEE Trans. Power Deliv., vol. 33, no. 1, pp. 529–536, 2018, doi: 10.1109/TPWRD.2017.2718589.
  • [7] J. Zhu et al., “Magneto-Thermal Coupling Design and Performance Investigation of a Novel Hybrid Superconducting Fault Current Limiter ( SFCL ) With Bias Magnetic Field Based on MATLAB / SIMULINK,” IEEE Trans. Appl. Supercond., vol. 29, no. 2, pp. 1–5, 2019, doi: 10.1109/TASC.2019.2892295.
  • [8] M. Noe and M. Steurer, “High-temperature superconductor fault current limiters: Concepts, applications, and development status,” Supercond. Sci. Technol., vol. 20, no. 3, 2007, doi: 10.1088/0953-2048/20/3/R01.
  • [9] A. Morandi, “State of the art of superconducting fault current limiters and their application to the electric power system,” Phys. C Supercond. its Appl., vol. 484, pp. 242–247, 2013, doi: 10.1016/j.physc.2012.03.004.
  • [10] B. Xiang et al., “Study on the Parameter Requirements for Resistive-Type Superconducting Fault Current Limiters Combined with Mechanical DC Circuit Breakers in Hybrid AC/DC Transmission Grids,” IEEE Trans. Power Deliv., vol. 35, no. 6, pp. 2865–2875, 2020, doi: 10.1109/TPWRD.2020.2981870.
  • [11] L. Siyuan et al., “Physica C : Superconductivity and its applications A novel simplified modeling method based on R – Q curve of resistive type SFCL in power systems,” vol. 563, no. April, pp. 82–87, 2019, doi: 10.1016/j.physc.2019.04.016.
  • [12] P. T. Pascal, A. Badel, G. Auran, and G. S. Pereira, “Superconducting Fault Current Limiter for Ship Grid Simulation and Demonstration,” IEEE Trans. Appl. Supercond., vol. 27, no. 2, pp. 1–5, 2017, doi: 10.1109/TASC.2017.2674964.
  • [13] K. Yang et al., “Direct-Current Vacuum Circuit Breaker with Superconducting Fault-Current Limiter,” IEEE Trans. Appl. Supercond., vol. 28, no. 1, pp. 1–7, 2018, doi: 10.1109/TASC.2017.2767500.
  • [14] S. Yadav, K. Bharati, and V. Tewari, “Superconducting Fault Current Limiter-A Review,” vol. 14, no. 2, pp. 1–6, 2019.
  • [15] M. F. Khan, A. L. L. Jarvis, E. A. Young, and R. G. Stephen, “Comparison of Superconducting Fault Current Limiters against Traditionally Employed Practices in the Management of Fault Levels in the South African National Grid,” no. January, 2015.
  • [16] L. Martini, M. Bocchi, and R. Dalessandro, “Electrical testing of 1 MVA-class three-phase superconducting fault current limiter prototypes,” no. April, 2007.
  • [17] M. M. Aly and E. A. Mohamed, “Comparison between resistive and inductive superconducting fault current limiters for fault current limiting,” Proc. - ICCES 2012 2012 Int. Conf. Comput. Eng. Syst., no. May, pp. 227–232, 2012, doi: 10.1109/ICCES.2012.6408518.
  • [18] S. Belkhiat, “Modeling and Simulation of Resistive Superconducting Fault-Current Limiters,” no. June, 2015, doi: 10.1007/s10948-012-1685-z.
  • [19] D. Fedasyuk and P. Serdyuk, “Simulation of Superconducting Fault Current Limiter Behaviour in Matlab / Femlab / Simulink Environment,” no. 1, pp. 77–80, 2006.
  • [20] S. Rai, U. Prasad, and V. K. Jain, “Application of Superconducting Fault Current Limiters in Smart Grid System,” vol. 4, no. 12, pp. 5738–5747, 2015, doi: 10.15680/IJIRSET.2015.0407051.
  • [21] M. Firouzi, S. Aslani, G. B. Gharehpetian, and A. Jalilvand, “Effect of Superconducting Fault Current Limiters on Successful Interruption of Circuit Breakers,” Renew. Energy Power Qual., no. May 2014, pp. 120–124, 2012, doi: 10.24084/repqj10.245.
  • [22] Sander A. Franke, “Master of Science Thesis Fault Current Control in the Transmission Network,” 2012.
  • [23] SuperOx, “Superconducting Fault Current Limiters.” http://www.superox.ru/upload/FCL-full-information.pdf.
  • [24] M. J. Bright C.G., Hirst M., Husband M., Mackay A., “The design and benefits of MgB2 Superconducting Fault Current Limiters for future Naval applications,” 2011.
  • [25] R. Dommerque et al., “First commercial medium voltage superconducting fault-current limiters: Production, test and installation,” Supercond. Sci. Technol., vol. 23, no. 3, pp. 1–9, 2010, doi: 10.1088/0953-2048/23/3/034020.
  • [26] M. Moyzykh et al., “First Russian 220 kV superconducting fault current limiter for application in city grid,” IEEE Trans. Appl. Supercond., no. August 2017, pp. 1–7, 2021, doi: 10.1109/TASC.2021.3066324.
  • [27] C. Schacherer, J. Langston, M. Steurer, and M. Noe, “Power Hardware-in-the-Loop testing of a YBCO coated conductor fault current limiting module,” IEEE Trans. Appl. Supercond., vol. 19, no. 3, pp. 1801–1805, 2009, doi: 10.1109/TASC.2009.2018048.
  • [28] M. Tsuda, Y. Mitani, K. Tsuji, and K. Kakihana, “Application of resistor based superconducting fault current limiter to enhancement of power system transient stability,” IEEE Trans. Appl. Supercond., vol. 11, no. 1 II, pp. 2122– 2125, 2001, doi: 10.1109/77.920276.
  • [29] S. Y. Kim and J. O. Kim, “Reliability evaluation of distribution network with DG considering the reliability of protective devices affected by SFCL,” IEEE Trans. Appl. Supercond., vol. 21, no. 5, pp. 3561–3569, 2011, doi: 10.1109/TASC.2011.2163187.
  • [30] M. Akbari, H. Chavda, J. Chitroda, and N. Kothadiya, “Review paper on Fault analysis and its Limiting Techniques .,” Int. Res. J. Eng. Technol., vol. 4, no. 2, pp. 566–571, 2017, [Online]. Available: https://irjet.net/archives/V4/i2/IRJET-V4I2107.pdf.
  • [31] W. T. B. de Sousa, “Transient Simulations of Superconducting Fault Current Limiters,” Saf. Sci., vol. 33, no. 3, pp. 1–6, 2015, doi: 10.1016/j.ssci.2015.04.023.
  • [32] K. Qian, Z. Guo, Y. Terao, and H. Ohsaki, “Electromagnetic and thermal design of superconducting fault current limiters for DC electric systems using superconducting,” 2017.
  • [33] S. Xue, F. Gao, W. Sun, and B. Li, “Protection principle for a DC distribution system with a resistive superconductive fault current limiter,” Energies, vol. 8, no. 6, pp. 4839–4852, 2015, doi: 10.3390/en8064839.
Fırat Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1308-9072
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1987
  • Yayıncı: FIRAT ÜNİVERSİTESİ