Effects of Viscosity Models on Natural Convection of Cu-water Nanofluids in a Triangular Cavity

Bu çalışmada, üçgen bir kavite içindeki bakır-su bazlı nanoakışkanların laminer doğal konveksiyon akışı sonlu hacimler metoduyla nümerik olarak incelenmiştir. Kavitenin yan duvarları farklı şekilde ısıtılmış olup, alt duvarı dalgalı ve yalıtılmıştır. Yönetici parametre olarak Grashof sayısı 104 - 106 aralığında, katı partiküllerin hacim fraksiyonu 0, 0.02, 0.04 aralığında ele alınmıştır. Nanoakışkanların viskozitesinin hesaplanmasında Batchlor, Brinkman, Pak ve Cho, Einstein and Maiga vd. modelleri kullanılmıştır. Sonuçlar göstermektedir ki, ısı transfer miktarı, katı hacim fraksiyonu ve Grashof sayısının artmasıyla neredeyse lineer olarak artmaktadır. En yüksek ısı transfer oranı Batchelor modeli kullanıldığında ortaya çıkmaktadır.

Üçgen Bir Kavite İçerisindeki Bakır-Su Nanoakışkanların Doğal Konveksiyon Üzerinde Viskozite Modellerinin Etkisi

In this study, laminar natural convection heat transfer and fluid flow in a triangular cavity filled with Cu-water nanofluids is studied numerically by using finite volume method. Bottom wall of the cavity is taken as adiabatic while inclined walls have different temperature which are isothermally heated. As governing parameters, Grashof number is taken in the range of 104 - 106, the solid particle volume fraction values are taken as 0, 0.02 and 0.04. In the calculation, different viscosity models such as Batchelor, Brinkman, Pak and Cho, Einstein and Maiga et al. are tested on natural convection heat transfer and fluid flow. It is observed that heat transfer increases almost linearly with increasing of solid volume fraction and Grashof number. Also, another finding is that the higest heat transfer is observed when Batchelor model is used.

___

  • 1. Oztop, H.F., Varol Y. and Pop I., (2009) Investigation of natural convection in triangular enclosure filled with porous media saturated with water near 4 oC, Energy Conversion and Management 50: 1473-1480
  • 2. Varol, Y. Oztop, H.F. and Koca, A. (2008) Entropy production due to free convection in partially heated isosceles triangular enclosures, Appl. Thermal Engineering, 28:1502-1513.
  • 3. Haese, P.M., Teubner M.D. (2002) Heat exchange in an attic space. Int. J. Heat Mass Transfer 45:4925-4936.
  • 4. Asan H. and Namli L. (2001) Numerical simulation of buoyant flow in a roof of triangular cross-section under winter day boundary conditions. Energy Build, 33:753-757.
  • 5. Selimefendigil F. and Öztop H.F., (2014) MHD mixed convection of nanofluid filled partially heated triangular enclosure with a rotating adiabatic cylinder,Journal of the Taiwan Institute of Chemical Engineers, 45: , 2150-2162.
  • 6. Rahman, M.M., Öztop, H.F, Mekhilef, S., Saidur, R. and Khaled Al-Salem, (2014) Unsteady natural convection in Al2O3-water nanofluid filled in isosceles triangular enclosure with sinusoidal thermal boundary condition on bottom wall, Superlattices and Microstructures, 67:181- 196.
  • 7. Meyer, J.P., Adio, S.A., Sharifpur, M. and Nwosu, P.N. (2016) The viscosity of nanofluids: a review of the theoretical, empirical, and numerical models, Heat Transfer Engineering, 37(5):387-421.
  • 8. Abdellahoum, C., Mataoui, A., Oztop, H.F. (2015) Comparison of viscosity variation formulations for turbulent flow of Al2O3-water nanofluid over a heated cavity in a duct, Advanced Powder Technology 26: 1210-1218.
  • 9. Mansour, M.A. and Sameh E.A, (2015) A numerical study on natural convection in porous media-filled an inclined triangular enclosure with heat sources using nanofluid in the presence of heat generation effect, Eng. Science and Technology, an Int. Journal, 18: 485-495.
  • 10. Rahman, M.M. Mojumder, S., Saha, S. Mekhilef, S. and Saidur, R. (2014) Augmentation of natural convection heat transfer in triangular shape solar collector by utilizing water based nanofluids having a corrugated bottom wall, Int. Comm. in Heat Mass Transfer, 50, 117-127.
  • 11. Billah, M.M., Rahman, M.M., Uddin M. Sharif and Islam, M.N. (2014) Numerical simulation on buoyancy-driven heat transfer enhancement of nanofluids in an inclined triangular enclosure, Procedia Engineering, 90, 517-523.
  • 12. Mahmoudi, A. H. Pop, I. Shahi, M. (2012) Effect of magnetic field on natural convection in a triangular enclosure filled with nanofluid, Int. Journal of Thermal Sciences, 59, 126-140.
  • 13. Bachelor, G.K., (1977). The effect of Brownian motion on the bulk stress in a suspension of spherical particles, J. Fluid Mech., 83, 97-117.
  • 14. Brinkman, H.C. (1952) The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 20, 571-581.
  • 15. Einstein, A. (1906) A new determination of molecular dimensions, Ann. Phys,. 4:(19): 37-62.
  • 16. Maiga, S.E.B., Nguyen, C.T., Galanis, N. and Roy, G., (2004), Heat transfer enhancement in forced convection laminar tube flow by using nanofluids, in Proceedings of the International Symposium on Advances in Computational Heat Transfer, 24: 19-24.
  • 17. Pak, B.C. and Cho, Y.I. (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Exp. Heat Transf., 11, 151-170.
  • 18. Yu W. and Choi, S.U.S. (2003) The role of interfacial layer in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, J. Nanoparticles Res. 5, 167-171.