Bağ Budama Atığına Uygulanan İnert ve Oksidatif Torrefaksiyon İşleminin Karşılaştırılması

Sunulan çalışmada tarımsal atıkların yakıt özelliklerinin iyileştirilmesi amacıyla farklı ortamlarda torrefaksiyon işlemi uygulanan bağ budama atığının (BBA) biyokömür (katı ürün) verimi ve yakıt özelliklerindeki değişim araştırılmıştır. Bunun için BBA önce 280ºC’de, inert ve oksitleyici ortamlarda, kısa kalma süresinde torrefiye edilmiştir. İşlem sonucu oluşan biyokömürün yakıt özelliklerindeki değişimin tespiti için kısa ve elementel analizler ile birlikte üst ısı değeri ve enerji verimindeki değişim belirlenmiştir. Ayrıca elde edilen biyokömürün doğal konveksiyonlu sabit yatak yakma sisteminde yanma davranışı incelenerek ham biyokütle ile karşılaştırılmıştır. Yapılan çalışma sonucunda her iki ortamda da torrefaksiyon sonrası oluşan biyokömürün yakıt özelliklerinin iyileştiği tespit edilmiştir. Sonuç olarak yüksek işlem sıcaklıklarında torrefaksiyon için oksidatif atmosferlerin de kullanılabileceği sonucuna ulaşılmıştır.

Comparison of Inert and Oxidative Torrefaction Process Applied to Vineyard Pruning Waste

In the present study, the change in the product yield and fuel properties of the vineyard pruning waste (BBA) was investigated with the torrefaction process applied in different environments in order to improve the fuel properties of agricultural wastes. BBA was first torrified at 280ºC, in inert and oxidizing environments, for a short residence time. In order to determine the change in the fuel properties of the biochar formed as a result of the process, the change in the upper heat value and energy efficiency was determined together with the proximate and elemental analyzes. Torrefied and raw biomass were burned in a fixed bed with natural convection and differences in combustion behavior were evaluated and compared.. The results of study show that the fuel properties of the biochar formed after torrefaction in both environments improved. As a result, it can be said that oxidative atmospheres can also be used for torrefaction at high processing temperatures.

___

  • Lund H. Renewable energy strategies for sustainable development. Energy 2007;32:912-9.
  • Gonçalves da Silva C. Renewable energies: Choosing the best options. Energy 2010;35:3179-93.
  • Chen WH, Kuo PC. A study on torrefaction of various biomass materials and its impact on lignocellulosic structure simulated by a thermogravimetry. Energy 2010;35:2580-6.
  • Fiaschi D, Carta R. CO2 abatement by co-firing of natural gas and biomass derived gas in a gas turbine. Energy 2007;32:549-67.
  • Chen WH, Wu JS. An evaluation on rice husk and pulverized coal blends using a drop tube furnace and a thermogravimetric analyzer for application to a blast furnace. Energy 2009;34:1458-66.
  • Chew JJ, Doshi V. Recent advances in biomass pretreatment— torrefaction fundamentals and technology. Renew Sust Energ Rev. 2011;15:4212–22.
  • Das, O., Sarmah, A.K., Bhattacharyya, D., A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites. Waste Manag. 2015; 38: 132–140.
  • Das, O., Sarmah, A.K., Bhattacharyya, D., Mechanism of waste biomass pyrolysis: Effect of physical and chemical pre-treatments.Sci. Total Environ. 2015; 537: 323–334.
  • Klass, D.L., Biomass for Renewable Energy, Fuels, and Chemicals., San Diego, California, USA: Academic Press 1998.
  • Patel M, Zhang X, Kumar A. Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: a review. Renew Sustain Energy Rev 2016;53:1486–99.
  • Cai J, He Y, Yu X, Banks SW, Yang Y, Zhang X, et al. Review of physicochemical properties and analytical characterization of lignocellulosic biomass. Renew Sustain Energy Rev 2017;76:309–22.
  • Chen DY, Wang Y, Liu YX, Cen KH, Cao XB, Ma ZQ, et al. Comparative study on the pyrolysis behaviors of rice straw under different washing pretreatments of water, acid solution, and aqueous phase bio-oil by using TG-FTIR and Py-GC/MS. Fuel 2019;252:1–9.
  • Li K, Wang Z-x, Zhang G, Cui M-s, Lu Q. Yang Y-p. Selective production of monocyclic aromatic hydrocarbons from ex situ catalytic fast pyrolysis of pine over the HZSM-5 catalyst with calcium formate as a hydrogen source. Sustain Energ Fuels 2020;4:538–48.
  • Prins MJ, Ptasinski KJ, Janssen FJJG. More efficient biomass gasification via torrefaction. Energy 2006;31:3458–70.
  • Recari J, Berrueco C, Puy N, Alier S, Bartroli J, Farriol X. Torrefaction of a solid recovered fuel (SRF) to improve the fuel properties for gasification processes. Appl Energy 2017;203:177–88.
  • Pimchuai A, Dutta A, Basu P. Torrefaction of agriculture residue to enhance combustible properties. Energy Fuels 2010;24:4638–45.
  • Rousset P, Aguiar C, Labbe N, Commandre J-M. Enhancing the combustible properties of bamboo by torrefaction. Bioresour Technol 2011;102:8225–31.
  • Nhuchhen, D. R., Basu, P., & Acharya, B. A comprehensive review on biomass torrefaction. Int. J. Renew. Energy Biofuels, 2014: 1-56.
  • Deng J, Wang GJ, Kuang JH, Zhang YL, Luo YH. Pretreatment of agricultural residues for co-gasification via torrefaction. J. Anal. Appl. Pyrolysis 2009; 86: 331-7.
  • Chen, WH., Kuo, PC. Torrefaction and co-torrefaction characterization of hemicellulose, cellulose and lignin as well as torrefaction of some basic constituents in biomass. Energy. 2011; 36: 803–11.
  • Chen WH, Peng J, Bi XT. A state-of-the-art review of biomass torrefaction, densification and applications. Renew Sust Energ Rev. 2015;44:847–66.
  • Basu P, Sadhukhan AK, Gupta P, Rao S, Dhungana A, Acharya B. An experimental and theoretical investigation on torrefaction of a large wet wood particle. Bioresour Technol. 2014;159:215–22.
  • Li H, Liu X, Legros R, Bi XT, Lim CJ, Sokhansanj S. Pelletization of torrefied sawdust and properties of torrefied pellets. Appl Energy 2012;93:680–5.
  • Chen D, Cen K, Jing X, Gao J, Li C, Ma Z. An approach for upgrading biomass and pyrolysis product quality using a combination of aqueous phase bio-oil washing and torrefaction pretreatment. Bioresour Technol 2017;233:150–8.
  • Chen W-H, Peng J, Bi XT. A state-of-the-art review of biomass torrefaction, densification and applications. Renew Sust Energy Rev 2015;44:847–66.
  • Chen D, Gao A, Cen K, Zhang J, Cao X, Ma Z. Investigation of biomass torrefaction based on three major components: hemicellulose, cellulose, and lignin. Energy Convers Manage 2018;169:228–37.
  • Chen D, Li Y, Deng M, Wang J, Chen M, Yan B, et al. Effect of torrefaction pretreatment and catalytic pyrolysis on the pyrolysis poly-generation of pine wood. Bioresour Technol 2016;214:615–22.
  • Chen D, Mei J, Li H, Li Y, Lu M, Ma T, et al. Combined pretreatment with torrefaction and washing using torrefaction liquid products to yield upgraded biomass and pyrolysis products. Bioresour Technol 2017;228:62–8.
  • Hu Q, Yang H, Xu H, Wu Z, Lim CJ, Bi XT, et al. Thermal behavior and reaction kinetics analysis of pyrolysis and subsequent in-situ gasification of torrefied biomass pellets. Energy Convers Manage 2018;161:205–14.
  • Zhang H, Shao S, Ryabov G, Jiang Y, Xiao R. Functional group in situ evolution principles of produced solid and product distribution in biomass torrefaction process. Energy Fuels 2017;31:13639–46.
  • Su, Y., Zhang, S., Liu, L., Qi, P., Xu, D., Shi, L., ... & Zhu, S. Upgrading Biomass Fuels via Combination of CO2-Leaching and Torrefaction. Energy & Fuels 2021; 35(6): 5006-5014.
  • Su, Y., Zhang, S., Liu, L., Xu, D., & Xiong, Y. Investigation of representative components of flue gas used as torrefaction pretreatment atmosphere and its effects on fast pyrolysis behaviors. Bioresour. Technol, 2018; 267: 584-590.
  • Xu, X., Li, Z., & Jiang, E., Torrefaction performance of camellia shell under pyrolysis gas atmosphere. Bioresour. Technol 2019; 284: 178-187.
  • Lu, K. M., Lee, W. J., Chen, W. H., Liu, S. H., & Lin, T. C., Torrefaction and low temperature carbonization of oil palm fiber and eucalyptus in nitrogen and air atmospheres. Bioresour. Technol 2012; 123: 98-105.
  • Wang, C., Peng, J., Li, H., Bi, X. T., Legros, R., Lim, C. J.,Sokhansanj, S., Oxidative torrefaction of biomass residues and densification of torrefied sawdust to pellets. Bioresour. Technol 2013; 127: 318-325.
  • Chen, D., Chen, F., Cen, K., Cao, X., Zhang, J., Zhou, J., Upgrading rice husk via oxidative torrefaction: Characterization of solid, liquid, gaseous products and a comparison with non-oxidative torrefaction. Fuel 2020; 275: 117936.
  • Barskov, S., Zappi, M., Buchireddy, P., Dufreche, S., Guillory, J., Gang, D., Sharp, R., Torrefaction of biomass: A review of production methods for biocoal from cultured and waste lignocellulosic feedstocks. Renewable Energy 2019; 142: 624-642.
  • Cheng, W., Zhu, Y., Zhang, W., Jiang, H., Hu, J., Zhang, X., Chen, H., Effect of oxidative torrefaction on particulate matter emission from agricultural biomass pellet combustion in comparison with non-oxidative torrefaction. Renewable Energy 2022; 189: 39-51.
  • Chen, W.- H., Du, S.- W., Tsai, C.- H. & Wang, Z.- Y. (2012). “Torrefied Biomasses in a Drop Tube Furnace to Evaluate Their Utility in Blast Furnaces,” . Bioresour. Technol 2012; 111: 433-438.
  • Niu, Y., Lv, Y., Lei, Y., Liu, S., Liang, Y., Wang, D., Biomass torrefaction: properties, applications, challenges, and economy. Renewable Sustainable Energy Rev. 2019; 115: 109395
  • Anonim, 2013. FAOSTAT İnternet Tarım İstatistikleri. www.fao.org (04.12.2015).
  • Anonim, 2014. Türkiye İstatistik Kurumu (TUİK). www.tuik.gov. tr (28.01.2016).
  • Giorio, C., Pizzini, S., Marchiori, E., Piazza, R., Grigolato, S., Zanetti, M., Tapparo, A. Sustainability of using vineyard pruning residues as an energy source: Combustion performances and environmental impact. Fuel 2019; 243: 371-380.
  • Huang, S., Lei, C., Qin, J., Yi, C., Chen, T., Yao, L., Xia, M., Properties, kinetics and pyrolysis products distribution of oxidative torrefied camellia shell in different oxygen concentration. Energy 2022; 251: 123941.
  • Chen, W. H., Lu, K. M., Lee, W. J., Liu, S. H., & Lin, T. C., Non-oxidative and oxidative torrefaction characterization and SEM observations of fibrous and ligneous biomass. Appl Energy 2014; 114: 104-113.
  • Conag, A. T., Villahermosa, J. E. R., Cabatingan, L. K., & Go, A. W., Energy densification of sugarcane leaves through torrefaction under minimized oxidative atmosphere. Energy Sustainable Dev 2018; 42: 160-169.
  • Yılgın, M., Duranay, N., Pehlivan, D., Torrefaction and combustion behaviour of beech wood pellets. J. Therm. Anal. Calorim. 2019; 138(1): 819-826.
  • Vorobiev, N., Becker, A., Kruggel-Emden, H., Panahi, A., Levendis, Y. A., & Schiemann, M. Particle shape and Stefan flow effects on the burning rate of torrefied biomass. Fuel 2017; 210: 107-120.
  • Akinrinola, F. S., Ikechukwu, N., Darvell, L. I., Jones, J. M., & Williams, A. The potential use of torrefied Nigerian biomass for combustion applications. Journal of the Energy Inst. 2020; 93(4):1726-1736.
  • Riaza, J., Gibbins, J., Chalmers, H., Ignition and combustion of single particles of coal and biomass. Fuel 2017; 202: 650-655.
  • Chen, W.- H., Du, S.- W., Tsai, C.- H. & Wang, Z.- Y.,Torrefied Biomasses in a Drop Tube Furnace to Evaluate Their Utility in Blast Furnaces, Bioresour. Technol 2012; 111: 433-438.
  • Duranay Deveci, N., Yılgın, M., & Pehlivan, D., Co-combustion of pellets from Soma lignite and waste dusts of furniture works. Int. J. Green Energy 2008; 5(6): 456-465.
Fırat Üniversitesi Mühendislik Bilimleri Dergisi-Cover
  • ISSN: 1308-9072
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1987
  • Yayıncı: FIRAT ÜNİVERSİTESİ
Sayıdaki Diğer Makaleler

KOBİ’lerin Ekonomiye Sağladıkları Katkının Tahmini İçin Derin Öğrenme Tabanlı Model

Anıl UTKU, Ali SEVİNÇ, M. Ali AKCAYOL

Bir Boyutlu Evrişimsel Sinir Ağı Yardımıyla Faz Kilitleme Değeri ve Diferansiyel Entropi Özellikleri Kullanılarak EEG Sinyallerinde Duygu Tanınması

Hakan UYANIK, Salih Taha Alperen ÖZÇELİK, Abdülkadir ŞENGÜR

Doğal Dil İşleme Teknikleri Kullanarak E-Ticaret Kullanıcı İncelemelerinde Özellik Tabanlı Duygu Analizi

Serpil ASLAN

Simetrik ve Asimetrik Şifreleme Algoritmalarının Performans Karşılaştırılması

Alev KAYA, İbrahim TÜRKOĞLU

İki Girişli İki Çıkışlı Sistemlerde Ayrık Zamanda PI-PR2 Kontrolör Tasarımı

Ayşe DUMAN MAMMADOV, Emre DİNCEL, Mehmet Turan SÖYLEMEZ

Çift Kabuk Cephe Sistemlerinin Sıcak ve Soğuk İklim Bölgeleri için Isıl Performanslarının İncelenmesi

Elif Nur YÜKSEL, Betül BEKTAŞ EKİCİ

Asansör Kabininin Farklı Konumu İçin Kılavuz Raylarında Oluşan Gerilme Dağılımının Sonlu Elemanlar Metodu ile Analizi

Cebeli ÖZEK, Emre SÜER

Ön Karışımlı Model Bir Yakıcıda Propan Gazının Swirl Sayısı Değişimlerinde Yanma Karakteristiğinin Araştırılması

Caner SIPÇIK, Murat TAŞTAN

Elektrikli Araç Teknolojisinde Kullanılan Kurşun Asit ve Li-iyon Bataryaların Galvanostatik Test Sonuçlarının Karşılaştırılması

Esra BALCİ, Gürkan GÜNDÜZ, Sebahat ALTUNDAĞ, Serdar ALTIN

Siber Güvenlikte CIC-Darknet2020 Veri Seti Kullanarak VPN/NoVPN ve Tor/NoTor Sınıflandırması: Basit ve Karmaşık Modellerin Kullanımı

Yusuf ALACA