Nikelin P-T diyagramının moleküler dinamik yöntemi ile hesaplanması

Metalik malzemelerin faz diyagramlarının belirlenmesi hem teknolojik hem de bilimsel açıdan önem taşır. Faz diyagramlarının teorik olarak belirlenmesinde büyük ölçüde Gibbs serbest enerjisinden yararlanılır. Moleküler dinamik benzetim yöntemlerinde serbest enerji doğrudan hesaplanabilen bir nicelik değildir. Bu nedenle çeşitli yaklaşımlar yapılır. Bu yaklaşımlar harmonik ve anharmonik olmak üzere iki grupta toplanabilir. Bu çalışmada, nikelin atomları arasındaki etkileşmeler Morse potansiyel enerji fonksiyonu kullanılarak modellenmiş ve sisteminin P-T faz diyagramı moleküler dinamik benzetim çalışmaları yardımıyla hesaplanmıştır. Ayrıca, sistem için hacim modülü ve termal genleşme katsayısı hesaplanmıştır. Elde edilen sonuçlar, Gömülmüş Atom Metodu sonuçları ve deneysel veriler ile karşılaştırılmıştır.

The calculation of P-T diagram for nickel using molecular dynamics method

Theoretical determination of phase diagrams of metallic substances is very important from both technological and scientific point of views. The Gibbs free energy is widely used in the calculation of the equilibrium phase diagrams. The free energy is not directly calculated in molecular dynamics simulation, but it is calculated by some approaches in two groups, harmonic and anharmonic. In this study, interatomic interactions in nickel are modelled by Morse potential energy function and P-T diagram of the system are calculated by means of molecular dynamics simulations. In addition, bulk modulus and thermal expansion coefficient of the system have been calculated. The results have been compared with the results of Embedded Atom Method and experimental data.

___

  • 1. P. Haasen, Physical Metallurgy, Second Ed., Cambridge University Press, UK 1992.
  • 2. D.A. Porter, and K. E. Easterling, Phase transformations in metals and alloys, 1, Second Edition, Chapman & Hall, T. J. Press (Padstow) Ltd., UK 1992.
  • 3. J.M. Haile, Molecular dynamics simulation, elementary methods, John Wiley & Sons, Inc., Canada 1992.
  • 4. C.R.A. Catlow, Computer modelling of fluids polymers and solids, 1-28, eds. C.R.A. Catlow et al., Kluwer Academic Publishers, U.S.A 1990.
  • 5. M.C. Moody and J.R. Ray, Free energy difference calculations comparing fcc and hcp structures using molecular dynamics computer simulations, J. Cem. Phys., 84, 3, 1795−1802, 1986.
  • 6. J. Ihm, Total energy calculations in solid state physics, Rep. Prog. Phys., 51, 105−128, 1988.
  • 7. W.C. Kerr, A.M. Hawthorne, R.J. Gooding, A.R. Bishop and J.A. Krumhansl, First-order displacive structural phase transitions studied by computer simulation, Phys. Rev. B, 45, 13, 7036−7044, 1992.
  • 8. M. Hasegawa and K. Ohno, The dependence of the phase diagram on the range of the attractive intermolecular forces, J. Phys.: Condens. Matter, 9, 3361−3370, 1997.
  • 9. G.D. Barrera and R.H. Tendler, Simulation of metals and alloys using quasi-harmonic lattice dynamics, Computer Phys. Comm., 105, 159−168, 1997.
  • 10. W. Hu, H. Xu, X. Shu, X. Yuan, B. Gao and B. Zhang, Calculation of thermodynamic properties of Mg-RE (RE=Sc, Y, Pr, Nd, Gd, Tb, Dy, Ho or Er) alloys by an analytic modified embedded atom method, J. Phys. D: Appl. Phys., 33, 711−718, 2000.
  • 11. S.A. Ostanin and V.Y. Trubitsin, Calculation of P-T phase diagram of hafnium, Computational Materials Science, 17, 174−177, 2000.
  • 12. Ş. Erkoç, Empirical many-body potential energy functions used in computer simulations of condensed matter properties, Physics Reports, 278, 79−105, 1997.
  • 13. A.P. Sutton, J.B. Pethica, H. Rafaii-Tabar, J.A. Nieminen, Mechanical properties of metals at the nanometre scale, in Electron theory in alloy design, Ed.: D.G. Pettifor and A.H. Cottrell, Institute of materials, The Alden Press Ltd., Oxford, pp. 191−233, 1992.
  • 14. M.C. Moody, J.R.Ray and A. Rahman, Phys.Rev.B, 35, 2, 557, 1987.
  • 15. Ohkawa, T. Tei, K Edagawa and S. Takeuchi, J. Non-Crystalline Solids, 153, Feb, 264−267, 1993.
  • 16. C. Kittel, Introduction to solid state physics, John Wiley & Sons, Inc., New York 1986.
  • 17. M. Parrinello and A. Rahman, , Crystal structure and pair potentials: a molecular-dynamics study, Phys. Rev. Lett., 45, 11, 1196−1199, 1980.
  • 18. M. Parrinello and A. Rahman, Polymorphic transitions in single crystals: a new molecular dynamics method, J. Appl. Phys., 52, 12, 7182−7190, 1981.
  • 19. L. Verlet, Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev. 159, 98−103, 1967.
  • 20. Y. Gurler and S. Ozgen, The calculations of P–T diagrams of Ni and Al using molecular dynamics simulation, Materials Letters, 4524, 1−8, 2003.
  • 21. M. Karimi, G. Stapay, T. Kaplan and M. Mostoller, Temperature dependence of the elastic constants of Ni: reliability of EAM in predicting thermal properties, Modelling Simul. Mater. Sci. Eng., 5, 337−346, 1997.
  • 22. S.P. Chen, Local volume potentials for actinide metals, J. Alloys and Compounds, 185, 353−362, 1992.
  • 23. J.H. Shim, B.J. Lee and Y.W. Cho, Thermal stability of unsupported gold nanoparticle:a molecular dynamics study, Surface Science, 512, 262−268, 2002.