Moleküler Kenetleme (Docking) Yöntemi ile Bakteriyel Bir Sinyal Kompleksi ve Peonidin Molekülü Etkileşiminin İncelenmesi

Gram-negatif bakterilerinden olan Pseudomonas aeruginosa, özellikle bağışıklık sistemi baskılanmış hastalarda önemli bir enfeksiyon sebebidir. Biyofilm oluşturma özelliği olan P. aeruginosa bu özelliği sebebi ile çoklu antibiyotik direncine sahiptir ve eredikasyonu güçtür. Üçlü bir sinyal dizisi olan YFiBRN, periplazmada alınan sinyallere cevap olarak yüzey adaptasyonu, biyofilm oluşumu gibi hücresel süreçlerde etkili olan c-di-GMP seviyelerini modüle eder. Antosiyaninler grubunda bulunan peonidin ise antibakteriyel özelliğe sahiptir. Bu çalışmada moleküler kenetleme (docking) metodu kullanılarak YFiR-YFiB (59-168) ile peonidin arasındaki etkileşim araştırılmıştır.

___

  • [1] Diggle, S. P., & Whiteley, M. (2020;2019;). Microbe profile: Pseudomonas aeruginosa : Opportunistic pathogen and lab rat. Microbiology (Society for General Microbiology), 166(1), 30-33. https://doi.org/10.1099/mic.0.000860
  • [2] LaBauve, A. E., & Wargo, M. J. (2012). Growth and laboratory maintenance of pseudomonas aeruginosa. Current Protocols in Microbiology (Online), Chapter 6, Unit 6E.1.
  • [3] Olson, M. V., Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., Brinkman, F. S. L., Hufnagle, W. O., Kowalik, D. J., Lagrou, M., Garber, R. L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L. L., Coulter, S. N., Folger, K. R., . . . Lory, S. (2000). Complete genome sequence of pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature (London), 406(6799), 959-964. https://doi.org/10.1038/35023079
  • [4] Harrison, F. (2007). Microbial ecology of the cystic fibrosis lung. Microbiology (Society for General Microbiology), 153(4), 917-923. https://doi.org/10.1099/mic.0.2006/004077-0
  • [5] Driscoll, J. A., Brody, S. L., & Kollef, M. H. (2007). The epidemiology, pathogenesis and treatment of pseudomonas aeruginosa infections. Adis International. https://doi.org/10.2165/00003495-200767030-00003
  • [6] Flemming, H., & Wingender, J. (2010). The biofilm matrix. Nature Reviews. Microbiology, 8(9), 623-633. https://doi.org/10.1038/nrmicro2415
  • [7] Hassan, A., Usman, J., Kaleem, F., Omair, M., Khalid, A., & Iqbal, M. (2011). Evaluation of different detection methods of biofilm formation in the clinical isolates. The Brazilian Journal of Infectious Diseases, 15(4), 305-311. https://doi.org/10.1590/S1413-86702011000400002
  • [8] Newell, P. D., Boyd, C. D., Sondermann, H., & O'Toole, G. A. (2011). A c-di-GMP effector system controls cell adhesion by inside-out signaling and surface protein cleavage. PLoS Biology, 9(2), e1000587-e1000587. https://doi.org/10.1371/journal.pbio.1000587
  • [9] Jenal, U., Reinders, A., & Lori, C. (2017). Cyclic di-GMP: Second messenger extraordinaire. Nature Reviews. Microbiology, 15(5), 271-284. https://doi.org/10.1038/nrmicro.2016.190
  • [10] Malone, J. G., Jaeger, T., Spangler, C., Ritz, D., Spang, A., Arrieumerlou, C., Kaever, V., Landmann, R., & Jenal, U. (2010). YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in pseudomonas aeruginosa. PLoS Pathogens, 6(3), e1000804. https://doi.org/10.1371/journal.ppat.1000804
  • [11] Giardina, G., Paiardini, A., Fernicola, S., Franceschini, S., Rinaldo, S., Stelitano, V., & Cutruzzolà, F. (2013). Investigating the allosteric regulation of YfiN from pseudomonas aeruginosa: Clues from the structure of the catalytic domain. PloS One, 8(11), e81324-e81324. https://doi.org/10.1371/journal.pone.0081324
  • [12] Mecocci, P., Tinarelli, C., Schulz, R. J., & Polidori, M. C. (2014). Nutraceuticals in cognitive impairment and alzheimer's disease. Frontiers in Pharmacology, 5, 147-147. https://doi.org/10.3389/fphar.2014.00147
  • [13] Kwon, J. Y., Lee, K. W., Hur, H. J., & Lee, H. J. (2007). Peonidin inhibits phorbol-ester-induced COX-2 expression and transformation in JB6 P.sup.+ cells by blocking phosphorylation of ERK-1 and -2. Annals of the New York Academy of Sciences, 1095, 513. https://doi.org/10.1196/annals.1397.055
  • [14] Sun, H., Zhang, P., Zhu, Y., Lou, Q., & He, S. (2018). Antioxidant and prebiotic activity of five peonidin-based anthocyanins extracted from purple sweet potato (ipomoea batatas (L.) lam.). Scientific Reports, 8(1), 5018-12. https://doi.org/10.1038/s41598-018-23397-0
  • [15] Morris, G. M., Huey, R., & Olson, A. J. (2008). Using AutoDock for ligand-receptor docking. Current Protocols in Bioinformatics, Chapter 8, Unit 8.14.
  • [16] Huey, R., Morris, G. M., & Forli, S. (2012). Using AutoDock 4 and AutoDock vina with AutoDockTools: a tutorial. The Scripps Research Institute Molecular Graphics Laboratory, 10550, 92037.
  • [17] Baig, M. H., Ahmad, K., Roy, S., Ashraf, J. M., Adil, M., Siddiqui, M. H., Khan, S., Kamal, M. A., Provazník, I., & Choi, I. (2016). Computer aided drug design: Success and limitations. Current Pharmaceutical Design, 22(5), 572.
  • [18] Scotti, L., & Scotti, M. T. (2015). Computer aided drug design studies in the discovery of secondary metabolites targeted against age-related neurodegenerative diseases. Current Topics in Medicinal Chemistry, 15(21), 2239.
  • [19] Arthur, D. E., & Uzairu, A. (2019). Molecular docking studies on the interaction of NCI anticancer analogues with human phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit. Journal of King Saud University. Science, 31(4), 1151-1166. https://doi.org/10.1016/j.jksus.2019.01.011
  • [20] Xavier, M. M., Heck, G. S., Avila, M. B. d., Levin, N. M. B., Pintro, V. O., Carvalho, N. L., & Azevedo, W. F. d. (2016). SAnDReS a computational tool for statistical analysis of docking results and development of scoring functions. Combinatorial Chemistry & High Throughput Screening, 19(10), 801.
  • [21] Ducati, R. G., Basso, L. A., Santos, D. S., & de Azevedo, W. F. (2010). Crystallographic and docking studies of purine nucleoside phosphorylase from mycobacterium tuberculosis. Bioorganic & Medicinal Chemistry, 18(13), 4769-4774. https://doi.org/10.1016/j.bmc.2010.05.009