GENETİK KÜMELEME İLE GÖRÜNTÜ BÖLÜTLEME

Klasik K-ortalama kümeleme algoritması literatürde en sık kullanılan kümeleme algoritması olmasına rağ-men, başlangıç küme merkezlerine bağlı olarak bazen optimum sonuçlara yakınsayamamakla birlikte global çözüme yakınsaması büyük miktarlarda hesaplama ve zaman gerektirmektedir. Bu sebeplerden ötürü bu tür optimizasyon problemlerin çözümü için değişik metotlar geliştirilmiştir. Bu yaklaşımlardan en popüleri gene-tik algoritmalardır. Bu çalışmada klasik K-ortalama kümeleme algoritmasının belirtilen yetersizlikleri, gene-tik tabanlı bir kümeleme algoritması ile giderilmiştir. Genetik algoritmaların arama yetenekleri K küme merkezlerinin bulunması için kullanılmıştır. Gri derinlikteki farklı görüntüler, incelenen algoritmalar kulanı-larak sırası ile iki, üç ve dört küme oluşturacak şekilde bölütlenmiş ve ilgili sonuçlar sunulmuştur.

___

  • 1. R. C. Gonzalez, R. E. Woods, Digital image processing, Prentice Hall, 2002.
  • 2. N. R. Pal and S. K. Pal, “A Review on Image Segmentation Techniques”, Pattern Recogniti-on, vol.26, no.9, pp. 1277-1294, 1993.
  • 3. Y. J. Zhang, A survey on evaluation methods for image segmentation, Pattern Recog. Vol. 29, No. 8, 1335-1346, 1996.
  • 4. M.R. Anderberg, ‘Cluster Analysis for Applica-tions’,Academic Press,Inc.,Newyork, NY,1973.
  • 5. D.E.Goldenberg, ‘Genetic Algorithms in Search Optimization, and Machine Learning’, Addison -Wesley, New York, USA, 411p., 1989.
  • 6. U Maulik, S. Bandyopadhyay, Genetic Algorithm based clustering technique, Pattern Recog. 33, 1455-1465, 2000.
  • 7. S. Bandyopadhyay, U Maulik, Genetic cluste-ring for automatic evolution of clusters and application to image classification, Pattern Recog. 35, 1197-1208, 2002.
  • 8. K. Krisna and M. N. Murty, Genetic K-Means Algorithm, IEEE Trans. on system man and cybernetics, vol. 29, no. 3, pp.433-439, June, 1999.
  • 9. Yu-Chiun Chiou, L. W. Lan, Genetic clustering algorithms, European journal of operational research, vol.135, pp. 413-427, 2001.
  • 10. G. Garai, B.B. Chaudhuri, A novel genetic algorithm for automatic clustering, Pattern recognition letters, vol. 25, pp.173-187, 2004.
  • 11. S. Bandyopadhyay and U. Maulik, A K-Means Type Clustering Using Genetic Algorithms, Third Annual Conference on Indian Society of Information Theory and Applications and National Symposium on Management Science and Statistics - Applications to Trade and Industry, Amritsar, pp.66-67, 1999
  • 12. http://www.geocomputation.org/2000/GC015/Gc015.htm
  • 13. Lin Yu Tseng*, Shiueng Bien Yang, A genetic approach to the automatic clustering problem, Pattern Recognition, vol. 34, pp.415-424, 2001.
  • 14. A.K. Jain, R.C. Dubes, Algorithms for Clustering Data. Prentice-Hal, Englewood Cliffs, NJ, 1988.
  • 15. R. Kothari, D. Pitts, On finding the number of clusters, Patter Recognition Letters, 20, 405-416, 1999.
  • 16. R. O. Duda and P. E. Hart, "Pattern Classifi-cation and Scene Analysis," Wiley-Interscience, New York, 1973.
  • 17. M. K. Pakhira, S. Bandyopadhyay and U. Mau-lik, Validity index for crisp and fuzzy clusters, Pattern Recognition 37, pp. 487-501, 2004.