Timusa Özgü Hassal Cisimcikleri

Timus, toraksın mediyastinum bölgesinde kalbin ön ve üst kısmında ve sternumun arkasında yerleşmiş olan primer bir lenfoid organdır. Timusun kendine özgü ve onu diğer lenfoid organlardan ayıran özelliği, medullasındaki küremsi yapılar olan Hassal cisimciklerinin (HC) varlığıdır. Hassal cisimciği, ilk olarak 1849 yılında Arthur Hill Hassall tarafından timus medullasında bulunan konsantrik asidofilik korpüskül olarak tanımlanmıştır. Medulladaki HC'ler yassı nükleusları olan, eozinofilik Tip VI epitelyal retiküler hücrelerin bir araya gelerek konsantrik tabakalar halinde düzenlenmesiyle oluşan yapılardır. Yeni yapılan çalışmalarla HC'lerin hücre sinyalizasyonunda, transkripsyonunda ve metabolizmasında aktif rol aldıkları gösterilmiştir. Ayrıca HC yapılarının bazı hastalıklarla yakından ilişkili olduğu ortaya konulmaya başlanılmıştır. Bu da HC hastalık ilişkilerinin araştırıldığı yeni çalışmaların gelecekte büyük önem kazanabileceğini düşündürmektedir. Bu derlemede, HC'lerin fonksiyonel ve yapısal özellikleri ile bazı hastalıklarla ilişkileri hakkında özet bir bakış açısı sunulması amaçlanmaktadır.

Hassall Bodies Which are Special for Thymus

Thymus is a primary lymphoid organ which is located in the mediastinum of the thoracic cavity anterior and superior to the hearth and posterior to sternum. The distinctive and specific feature of thymus is the existence of Hassall corpuscles which are spherical bodies in the medulla. Hassall corpuscle was defined for the first time in 1849 by Arthur Hill Hassall as concentric acidophilic corpuscle in the medulla of the thymus. Hassall corpuscles are structures formed from eosinophylic type VI epithelial reticular cells, which have flatten nucleus, arranged concentrically. Recent studies conŞrmed that Hassall corpuscles have active roles in the cell signalization, transcription and metabolism. In addition, it has been demonstrated that Hassall corpuscles are closely associated with some diseases. Hence, further studies investigating the relationship between Hassall corpuscles and disease states might gain huge importance in the future. This review provides a brief overview about their functional and structural features and the relationship between some disease and Hassall corpuscles.

___

  • 1. Ovalle WK, Nahirney PC. Netter Temel Histoloji. Müftüoğlu S, Kaymaz F, Atilla P (Çeviren). İstanbul: Güneş Tıp Kitapevi, 2009: 205-8.
  • 2. Han BK, Suh YL, Yoon HK. Thymic ultrasound. Pediatr Radiol 2001; 31: 474-9.
  • 3. Junqueira LC, Carneiro J. Temel Histoloji (Çeviri editörü: Aytekin Y, Solakoglu S). İstanbul: Nobel Tıp Kitapevi, 2006: 260-87.
  • 4. Kierszenbaum AL, Tres LL. Histology and cell biology. In: Hyde M, Hall A (Editors). An Introduction to Pathology. 3st Edition, Philadelphia: Elsevier Saunders, 2012: 323-6.
  • 5. Ortiz-Hidalgo C. Early clinical pathologists 5: The man behind Hasall's corpuscles. J Clin Pathol 1992; 45: 99-101.
  • 6. Suster S, Rosai J, Thymus. In: Sternberg, S.S.(Ed.), Histology for Pathologists. Philadelphia, Toronto: Lippincott-Raven Publishers, 1997: 690- 1.
  • 7. Ors U, Dagdeviren A, Kaymaz FF, Muftuoglu SF. Cysts in the human thymus: maturational forms of Hassall's corpuscle? Okajima Folia Anat Jpn 1999; 76: 61-9.
  • 8. Bodey B, Bodey B Jr, Siegel SE, Kaiser HE. Novel insights into the function of the thymic Hassall's bodies. In Vivo 2000; 14: 407-18.
  • 9. Ross MH, Pawlina W. Histology A Text and Atlas. 6th Ed. Baltimore, Philadelphia Lippincott Williams & Wilkins, 2011: 468-9.
  • 10. Blau JN. A phagocytic function of Hassall's corpuscles. Nature 1965; 208: 564-7.
  • 11. Senelar R, Escola MJ, Escola R, Serrou B, Serre A. Relationship between Hassall's corpuscles and thymocytes fate in guinea-pig foetus. Biomedicine 1976; 24: 112-22.
  • 12. Nishio H, Matsui K, Tsuji H, Tamura A, Suzuki K. Immunolocalization of the mitogen-activated protein kinase signalling pathway in Hassall's corpuscles of the human thymus. Acta Histochem 2002; 103: 89-98.
  • 13. Zaitseva M, Kawamura T, Loomis R, Goldstein H, Blauvelt A. Stromal-derived factor 1 expression in the human thymus. J Immunol 2002; 168: 2609- 17.
  • 14. Pearse G. Normal structure, function and histology of the thymus. Toxicologic Pathology 2006; 34: 504-14.
  • 15. Bodey B, Bodey B Jr, Siegel SE, Kaiser HE. Immunocytochemical detection of the homeobox B3, B4 and C6 gene products within the human thymic cellular microenvironment. In Vivo 2000; 14: 419- 24.
  • 16. White AJ, Nakamura K, Jenkinson WE, et al. Lymphotoxin signals from positively selected thymocytes regulate the terminal differentiation of medullary thymic epithelial cells. J Immunol 2010; 185: 4769-76.
  • 17. Raica M, Encica S, Motoc A, Cimpean AM, Scridon T, Barsan M. Structural heterogeneity and immunohistochemical profile of Hassall corpuscles in normal human thymus. Ann Anat 2006; 188: 345-52.
  • 18. Friend SI, Hosier S, Nelson A, Foxworthe D, Williams DE, Farr A. A thymic stromal cell line supports in vitro development of surface IgM+ B cells and produces a novel growth factor affecting B and T lineage cells. Exp Hematol 1994; 22: 321-8.
  • 19. Soumelis V, Reche PA, Kanzler H, et al. Human epithelial cells trigger dendritic cell-mediated allergic inflammation by producing TSLP. Nat Immunol 2002; 3: 673-80.
  • 20. Watanabe N, Wang YH, Lee HK, et al. Hassall's corpuscles instruct dendritic cells to induce CD4+CD25+ regulatory T cells in human thymus. Nature 2005; 436: 1181-5.
  • 21. Wong J, Obst R, Correia-Neves M, Lsyev G, Mathis D, Benoist C. Adaptation of TCR repertoires to self-peptides in regulatory and non-regulatory CD4 T cells. J Immunol 2007; 178: 7032-41.
  • 22. Yong-Jun L. "Old Mystery Solved Revealing Origin f Regulatory T cells that 'Police' the Body". http://www.eurekalert.org/pub_releases/2005-10 11.10.2005.
  • 23. Nishio H, Matsui K, Tsuji H, Tamura A, Suzuki K. Immunohistochemical study of tyrosine phosphorylation signaling in Hassall's corpuscles of the human thymus. Acta Histochem 1999; 101: 421-9.
  • 24. Henry L, Anderson G. Immunoglobulins in Hassall's corpuscles of the human thymus. J Anat 1990; 168: 185-97.
  • 25. Milicevic NM, Milicevic Z. Cyclosporin Ainduced changes of the tymic microenviroment. A review of morphological studies. Histol Histopathol 1998; 13: 1183-96.
  • 26. Milicevic Z, Zivanovic V, Milicevic NM. Involution of bursa cloacalis (Fabricii) and tymus in cyclosporine A-treated chickens. Anat Histol Embryol 2002; 31: 61-4.
  • 27. Henry L, Anderson G. Immunoglobulin production in human thymus. J Pathol 1985; 146: 239.
  • 28. Henry L, Anderson G. Immunoglobulin-producing cells in the human thymus. Thymus 1988;12: 77- 87.
  • 29. Asghar A, Syed YM, Nafis FA. Polymorphism of Hassall's corpuscles in thymus of human fetuses. Int J Applied Basic Med Res 2012; 2: 7-9.
  • 30. Asghar A, Syed YM, Nafis FA. Histogenesis and morphogenesis of Hassall's corpuscles in human fetuses: A light microscopic study. J Anat Soc India 2012; 61: 163-5.
  • 31. Raica M, Cimpean AM, Encica S, Motoc A. Lymphocyte-rich Hassall bodies in the normal human thymus. Ann Anat 2005; 187:175-7.
  • 32. Encica S, Cimpean AM, Raica M, Barsan M. The significance of cytokeratin MNF116 and high molecular weight cytokeratin for the diagnosis of thymus tumors. Radiotherapy Oncol Med 2004; 10: 27-33.
  • 33. Hammer JA. Uber progressive und regressive formen von Hassallschen korpern. Z Anat Entwickl Gesch 1924;70: 466-88.
  • 34. Hassan A, Rasool Z. The Hassal of thymus: Hassals corpuscle histological and histopathological perspective. Sch J App Med Sci 2014; 2: 147-8.
  • 35. Calautti E, Missero C, Stein PL, Ezzell RM, Dotto GP. Fyn tyrosine kinase is involved in keratinocyte differentiation control. Genes Dev 1995; 9: 2279- 91.
  • 36. Ogura A, Noguchi Y, Yamamoto Y, Shibata S, Asano T, Okamoto Y, Honda M. Localization of HIV-1 in human thymic implant in SCID-hu mice after intravenous inoculation. Int J Exp Pathol 1996; 77: 201-6.
  • 37. Matsui N, Ohigashi I, Tanaka K, Sakata M, Furukawa T, Nakagawa Y, et al. Increased number of Hassall's corpuscles in myasthenia gravis patients with thymic hyperplasia. J Neuroimmunol 2014; 269: 56-61.
  • 38. Blau, JN, Veall N. The uptake and localization of proteins, Evans Blue and carbon black in the normal and pathological thymus of the guinea-pig. Immunol 1967; 12: 363-72.
  • 39. Randle-Barrett ES, Boyd RL. Thymic microenvironment and lymphoid responses to sublethal irradiation. Dev Immunol 1995; 4: 101-16.
  • 40. Marinova TT, Kuerten S, Petrov DB, Angelov DN. Thymic epithelial cells of human patients affected by myasthenia gravis overexpress IGF-I immunoreactivity. APMIS 2008; 116: 50-8.
  • 41. Kohnen P, Weiss L. An electron microscopic study of thymic corpuscles in the Guinea pig and the mouse. Anat Rec 1964; 148: 29-57.
  • 42. Blau JN. The dynamic behavior of Hassall's corpuscles and the transport of particulate matter in the thymus of guinea-pig. Immunology 1967; 13: 281-92.
  • 43. Varga I, Pospisilova V, Jablonska V, et al. Thymic Hassall's bodies of children with congenital heart defects. Bratisl Lek Listy 2010; 111: 552-7.
  • 44. Mikusová R, Gálfiová P, Polák S. Thymic medullary structures: Microscopical picture of the thymic medullary structures in children with congenital heart defects. Biologia Section Zoology 2012; 67: 240-6.
  • 45. Hachiya Y, Motonaga K, Itoh M, et al. Immunohistochemical expression and pathogenesis of BLM in the human brain and visceral organs. Neuropathology 2001; 21: 123-8.
  • 46. Romagnani P, Anunziato F, Manetti R, et. al. High CD30 ligand expression by ephitelial cells and Hassal's corpuscles in the medulla of human thymus. Blood 1998; 91: 3323-32.