Beta talasemi minörlü hastalarda eser element ve oksidatif hasar ilişkisi

Amaç: Çalışmanın amacı beta talasemi minörlü (BTM) hasta ve sağlıklı kontrol gruplarında eritrosit redükte glutatyon düzeylerinin, katalaz ve süperoksid dismutaz aktivitelerinin, plazma ve eritrosit malondialdehid düzeylerinin, serum çinko, bakır ve demir konsantrasyonlarının ölçümü, bu parametrelerin birbirleri ile olan ilişkileri her iki grupta karşılaştırmaktır. Gereç ve Yöntem: BTM olan 35 kişilik hasta grubu ile 40 kişilik normal sağlıklı bireyden oluşan kontrol grubunda eritrosit SOD, CAT aktiviteleri, GSH, MDA ve plazma MDA düzeyleri biyokimyasal yöntemlerle ölçüldü. Serum Fe, Cu ve Zn alev atomik absorpsiyon spektrofotometresi ile ölçüldü. Bulgular: Eritrosit SOD ve CAT aktiviteleri, GSH, serum Fe ve Zn düzeyleri, hematokrit, hemoglobin ve eritrosit sayısı hasta grubunda kontrol grubuna göre anlamlı olarak düşük bulundu (p

Relationship between trace element and oxidative damage in patients with beta-thalassemia minor

Objective: The aim of the present study was to determine levels of reducted glutathione, activities of catalase and superoxide dismutase, levels of malondialdehyde, concentrations of zinc, copper and iron in patients with beta-thalassemia minor (BTM) compared with healthy subjects, and to evaluate the relationships among these parameters. Materials and Methods: The patients consisted of 35 patients with BTM. The control group consisted of 40 healthy subjects. SOD, CAT, GSH and MDA were measured by biochemical methods. Zn, Cu and Fe levels were determined by flame atomic absorption spectrophotometer. Results: SOD and CAT activities, GSH levels, levels of Fe and Zn, hematocrit, hemoglobin and erythrocyte count in the beta-thalassemia minor subjects were found lower than those in control group (p<0.001). However, MDA and Cu levels were significantly higher in BTM subjects than those in the controls (p<0.001). There were significant positive correlations between MDA levels and Cu levels of BTM subjects. However, there were significant negative correlations between GSH and Fe levels. Moreover, there were significant negative correlations between plasma MDA and hematocrit and hemoglobin and erythrocyte count. There were also significant negative correlations between Cu and hematocrit and erythrocyte count. Conclusion: These findings emphasize the significant deficiencies of antioxidant system, Zn and Fe levels and the significant elevation of MDA and Cu levels in patients with BTM. Therefore, supplementation with trace elements involved in the antioxidative prosses may increase scavenger enzyme activities, and consequently, an improvement in clinical symptoms may be expected.

___

  • 1) Selek S, Aslan M, Horoz M, et al. Oxidative status and serum PON1 activity in beta-thalassemia minor. Clin Biochem. 2007; 40: 287-291.
  • 2) Yaprak I. Beta Talasemi Tanı ve Tedavisinde Güncel Yaklaşımlar. STED. 2004; 13:58-59.
  • 3) Altan N, Dinçel AS, Koca C. Diabetes Mellitus ve Oksidatif Stres. Türk Biyokimya Dergisi. 2006; 31:51-56.
  • 4) Bartal M, Mazor D, Dvilansky A, Meyerstein N. Iron deficiency anemia: recovery from in vitro oxidative stress. Acta Haematol. 1993; 90:94-98.
  • 5) Yılmaz K, Kahraman A, Bodur S, et al. Demir Eksikliği Anemisinde Eritrosit Redükte Glutatyon Düzeyleri ve Antioksidan Enzim Aktiviteleri. T Klin J Med Sci. 2004; 24:305-308.
  • 6) Scott MD. H2O2 injury in beta thalassemic erythrocytes: protective role of catalase and the prooxidant effects of GSH. Free Radic Biol Med. 2006; 40:1264-1272.
  • 7) Dhawan V, Kumar KhR, Marwaha RK, Ganguly NK. Antioxidant status in children with homozygous thalassemia.Indian Pediatr. 2005; 42:1141-1145.
  • 8) Naithani R, Chandra J, Bhattacharjee J, et al. Peroxidative stress and antioxidant enzymes in children with beta-thalassemia major. Pediatr Blood Cancer. 2006; 46:780-785.
  • 9) Chakraborty D, Bhattacharyya M. Antioxidant defense status of red blood cells of patients with beta-thalassemia and E beta-thalassemia. Clin Chim Acta. 2001; 305:123-129.
  • 10) Aydemir B, Kızıler AR, Onaran I, et al. Impact of Cu and Fe concentrations on oxidative damage in male infertility. Biol Trace Elem Res. 2006; 112:193-204.
  • 11) Gutteridge JMC. Iron promoters of the Fenton reaction and lipid peroxidation can be releated from haemoglobin by peroxides. FEBS Lett. 1986; 201:291-295.
  • 12) Rao J, Jagadeesan V. Lipid peroxidation and activities of antioxidant enzymes in iron deficiency and effect of carcinogen feeding. Free Radic Biol Med. 1996; 21:103-108.
  • 13) O'Dell BL. Zinc plays both structural and catalytic roles in metalloproteins. Nutr Rev. 1992; 50:48-50. Review.
  • 14) Nasr MR, Ali S, Shaker M, Elgabry E. Antioxidant micronutrients in children with thalassaemia in Egypt. East Mediterr Health J. 2002; 8:490-495.
  • 15) Steinkühler C, Pedersen JZ, Weser U, Rotilio G. Oxidative stress induced by a di-Schiff base copper complex is both mediated and modulated by glutathione. Biochem Pharmacol. 1991; 42:1821-1827.
  • 16) Sevim S, Ünal Ö, Tamer L, et al. Can serum levels of copper and zinc distinguish Alzheimer's patients from normal subjects? Journal of Neurological Sciences (Turkish) 2007; 24:197-205.
  • 17) Livrea MA, Tesoriere L, Pintaudi AM, et al. Oxidative stress and antioxidant status in beta-thalassemia major: iron overload and depletion of lipid-soluble antioxidants. Blood. 1996; 88:3608-3614.
  • 18) Sun Y, Oberley LW, Li Y. A simple method for clinical assay of superoxide dismutase. Clin Chem 1988:34; 497-500.
  • 19) Aebi H. Catalase in vitro. Bergmeyer, U., ed. Methods of enzymatic analysis. New York and London: Academic Press, 1974; pp.673-667.
  • 20) Beutler E, Duron O, Kelly B.M. Improved method for the determination of blood glutathione. J Lab Clin Med. 1963; 61:882-888.
  • 21) Stocks J, Dormandy TL. The autoxidation of human red cell lipids induced by hydrogen peroxide. Br J Haematol. 1971; 20:95-111.
  • 22) Buege JA, Aust STD. Microsomal lipid peroxidation. Method Enzymol 1978; 52:302-310.
  • 23) Vives Corrons JL, Miguel-García A, Pujades MA, et al. Increased susceptibility of microcytic red blood cells to in vitro oxidative stress. Eur J Haematol. 1995; 55:327-331.
  • 24) Chan AC, Chow CK, Chiu D. Interaction of antioxidants and their implication in genetic anemia. Proc Soc Exp Biol Med. 1999; 222:274-282. Review.
  • 25) Ashour MN, Salem SI, El-Gadban HM, et al. Antioxidant status in children with protein-energy malnutrition (PEM) living in Cairo, Egypt. Eur J Clin Nutr. 1999; 53:669-673.
  • 26) Beydoğan M, Afşar ÇU, Pilancı KN, et al. Çinko Eksikliği ve Anemi: Bir Olgu Sunumu. T.C. Sağlık Bakanlığı İstanbul Eğitim ve Araştırma Hastanesi Tıp Dergisi 2006; 7 (1).
  • 27) Öktem F, Yavrucuoğlu H, Türedi A, Tunç B. Çocuklarda Beslenme Alışkanlıklarının Hematolojik Parametreler ve Eser Elementler Üzerine Etkisi. S. D. Ü. Tıp Dergisi 2005; 12:6-10.