Sıçan serebellumunda demir nörotoksisitesine karşı vitamin E'nin koruyucu etkisi

Amaç: Bu çalışmada, intraserebroventriküler olarak verilen demirin, sıçan serebellar Purkinje hücrelerinde oluşturduğu nörotoksisiteye karşı yağda çözülebilen güçlü bir antioksidan olan vitamin E'nin (α-tokoferol) etkisini araştırdık. Gereç ve Yöntem: Sıçanlar, kontrol, demir ve demir+vitamin E grupları olmak üzere üç gruba ayrıldı. Demir ve demir+vitamin E gruplarındaki sıçanlara intraserebroventriküler olarak demir (FeCl36H2O, 200 mM, 2.5 μl) verildi. Demir+vitamin E grubundaki sıçanlara operasyonu takiben on gün süreyle 100 mg/kg/gün dozunda vitamin E intraperitoneal olarak verildi. Onuncu günün sonunda, bütün gruplardaki hayvanlar intrakardiyak yolla perfüze edildikten sonra dekapite edildiler. Beyin dokuları çıkarılarak standart histolojik doku takibi uygulandı. Toplam Purkinje hücre sayıları tarafsız sayım metodu olan stereolojik yöntemle hesaplandı. Bulgular: Ortalama toplam Purkinje hücre sayıları, kontrol grubunda 490584±13286; demir grubunda 331497±10764 ve demir+vitamin E grubunda 412118±15842 olarak bulundu. Demir ve demir+vitamin E grupları karşılaştırıldığında, vitamin E'nin demirin indüklediği Purkinje hücre kaybını %32.4'den %15.9'a düşürdüğü bulundu (p

Protective effect of vitamin E against iron -induced neurotoxicity in the rat cerebellum

Objective: In this study, we investigated the effect of vitamin E (&#945;-tocopherol), a potent fat-soluble antioxidant, against intracerebroventricular-injected iron-induced neurotoxicity on the cerebellar Purkinje cells in rats. Materials and Methods: Rats were divided into three groups: control, iron and iron+vitamin E groups. Rats in the iron and iron+vitamin E groups received intracerebroventricular iron (FeCl36H2O, 200 mM, 2.5 &#956;l), while those in iron+vitamin E groups were intraperitoneally injected with vitamin E (100 mg/kg/day) once a day after the operation for 10 days. After 10 days, all rats were perfused intracardially and then sacrificed. Brain tissues were removed and standard histological techniques were performed. The total numbers of Purkinje cells were estimated using unbiased stereological techniques. Results: Means of the total numbers of Purkinje cells in the cerebellum were estimated as 490584±13286, 331497±10764, 412118±15842 in the control, iron and iron+vitamin E groups, respectively. Comparison between iron and iron+vitamin E groups revealed that vitamin E significantly attenuates the iron-induced neuron loss from 32.4% to 15.9% (P < 0.01). Conclusion: Findings of the present study show that &#945;-tocopherol considerably reverses iron-induced Purkinje cell loss in cerebellum. It is thought that this effect may be due to the scavenging activity of vitamin E on free radicals.

___

  • 1) Aisen P, Enns C, Wessling-Resnick M. Chemistry and biology of eukaryotic iron metabolism. Int J Biochem Cell Biol 2001; 33: 940-959.
  • 2) Hill JM, Switzer RC. The regional distribution and cellular localization of iron in the rat brain. Neuroscience 1984;11:595-603
  • 3) Qian ZM, Wang Q. Expression of iron transport proteins and excessive iron accumulation of iron in the brain in neurodegenerative disorders. Brain Res. Rev. 1998; 27:257-267.
  • 4) Bostanci MO, Bağırıcı F. Nitric oxide synthesis inhibition attenuates iron-induced neurotoxicity: A stereological study. Neurotoxicology 2008a; 29: 130-135.
  • 5) Kozan R, Bostancı MÖ, Sefil F ve ark. Sıçan Serebellumunda Demirin İndüklediği Purkinje Hücre Kaybına Nikardipinin Ko-ruyucu Etkisi: Stereolojik Bir Çalışma. Fırat Tıp Dergisi 2008; 13: 167-170.
  • 6) Youdim MB, Ben-Shachar D, Riederer P. The role of monoamine oxidase, iron-melanin interaction, and intracellular calcium in Parkinson's disease. J Neural Transm Suppl. 1990; 32: 239-248.
  • 7) Pu YM, Wang Q, Qian ZM. Effect of iron and lipid peroxidation on development of cerebellar granule cells in vitro. Neuroscience. 1999; 89: 855-861.
  • 8) Thompson KJ, Shoham S, Connor JR. Iron and neurodegenerative disorders. Brain Res Bull 2001; 15:155-164.
  • 9) Willcox JK, Ash SL, Catignani GL. Antioxidants and prevention of chronic disease Critical Reviews in Food Science and Nutrition 2004; 44: 275-295.
  • 10) Pryor WA: Free radicals in autoxidation and in aging. Ed. Armstrong D, Sohal RS, Cutler RG, Slater TF, NY Raven Press, New York 1984; 13-41.
  • 11) Esterbauer H, Schmidt R, Hayn M. Relationships among oxidation of low-density lipoprotein, antioxidant protection, and atherosclerosis. Adv Pharmacol 1997; 38: 425-456.
  • 12) Frei B. Reactive oxygen species and antioxidant vitamins: mechanisms of action. The Am J Med 1994; 26:5-13.
  • 13) Hensley K, Benaksas EJ, Bolli R, et al. New perspectives on vitamin E: sgamma-tocopherol and carboxyelthylhyd roxychro-man metabolites in biology and medicine. Free Radic Biol Med 2004; 36:1-15.
  • 14) Cellini E, Piacentini S, Nacmias B, et al. A family with spinocerebellar ataxia type 8 expansion and vitamin E deficiency ataxia. Arch Neurol 2002; 59:1952-1953.
  • 15) Kozan R, Ayyildiz M, Yildirim M, et al. The influence of ethanol intake and its withdrawal on the anticonvulsant effect of α-tocopherol in the penicilin induced epileptiform activity in rats. Neurotoxicology 2007; 28: 463-470.
  • 16) Bonthius DJ, Bonthius NE, Napper RM, et al. Purkinje cell deficits in nonhuman primates following weekly exposure to ethanol during gestation. Teratology 1996; 53: 230-236.
  • 17) Welsh JP, Yuen G, Placantonakis DG, et al. Why do Purkinje cells die so easily after global brain ischemia? Aldolase C, EAAT4, and the cerebellar contribution to posthypoxic myoclonus. Adv Neurol 2002; 89: 331-359.
  • 18) Paxinos G, Watson C. The rat brain in stereotaxic coordinates, 4th Ed. Academic Press. Inc., CA, USA. 1998.
  • 19) Willmore LJ, Hiramatsu M, Kochi H et al. Formation of superoxide radicals after FeCl3 injection into rat isocortex. Brain Res 1983; 277: 393-396.
  • 20) Ağar E, Boşnak M, Amanvermez R, et al. The effects of ethanol on lipid peroxidation and glutathione level in the brain stem of rat. NeuroReport 1999; 10: 1799-1801.
  • 21) Gundersen HJ (). Stereology of arbitrary particles. A review of unbiased number and size estimator and the presentation of some new ones, in memory of William R. Thompson. J. Microsc 1986; 143: 3-45.
  • 22) Schmitz C, Hof PR. Design-based stereology in neuroscience, Neuroscience 2005; 130: 813-831.
  • 23) Moos T. Brain iron homeostasis. Dan Med Bull 2002; 49:279-301.
  • 24) Braughler JM, Duncan LA, Chase RL. The involvement of iron in lipid peroxidation, J Biol Chem 1986; 261: 10282-10289.
  • 25) Bostanci MO, Bagirici F. Neuroprotective effect of aminoguanidine on iron-induced neurotoxicity. Brain Res Bull 2008b; 76: 57-62.
  • 26) Meyerhoff JL, Lee JK, Rittase BW, et al. Lipoic acid pretreatment attenuates ferric chloride-induced seizures in the rat. Brain Res 2004; 1016:139-144.
  • 27) Floyd RA, Hensley K. Oxidative stress in brain aging. Implications for therapeutics of neurodegenerativediseases. Neurobiol Aging 2002; 23:795-807.
  • 28) Heaton MB, Mitchell JJ, Paiva M. Amelioration of ethanol-induced neurotoxicity in the neonatal rat central nervous system by antioxidant therapy. Alcohol Clin Exp Res 2000; 24:512-518.
  • 29) Goodman Y, Mattson MP. Secreted forms of β-amyloid precursor protein protect hippocampal neurons against amyloid β-peptide-induced oxidative injury. Exp Neurol 1994; 128: 1-12.
  • 30) Ciani E, Groneng L, Voltattorni M, et al. Inhibition of free radical production or free radical scavenging protects from the excito-toxic cell death mediated by glutamate in cultures of cerebellar granule neurons. Brain Res 1996; 728: 1-6.
  • 31) Stocker R and Frei B. Endogenous Antioxidant Defenses in Human Blood Plasma. In: Oxidative Stress: Oxidants and Antioxidants, H. Sies, ed. Academic Press, Orlando, FL, 1991; 213-243.
  • 32) Leibler PC. The rol of methabolism in the antioxidant function of vitamin E. Crit Rev Toxicol 1993; 23:147-169.
Fırat Tıp Dergisi-Cover
  • ISSN: 1300-9818
  • Başlangıç: 2015
  • Yayıncı: Fırat Üniversitesi Tıp Fakültesi