Koroner Arter Hastalığı Olmayan Ve Statin İle Tedavi Edilen Bireylerde Ampk Yolağında Yeni Bir Aday Modülatör Olarak Microrna-625-5p

Amaç: AMP-aktive protein kinaz (AMPK) 3-hidroksi-3-metilglutaril koenzim A’yı fosforilleyen ve aynızamanda kolesterol biyosentezinin kontrolünde rol alan bir redüktazdır. Çalışmamızda, AMPK sinyal yolununaterosklerozdaki rolünü ve insan makrofaj hücrelerinde etkili olup olmadığını test etmeyi amaçladık. Buamaçla, koroner arter hastalığı (KAH) olmayan bireylerin plazma microRNA (miRNA) profillerinde statin varlığındaekspresyon değişimlerini göstermek ve AMPK yolunun yeni modülatörlerini tanımlamayı hedefledik.Yöntemler: Kolesterol düzeyine bağlı ekspresyon değişimini değerlendirmek için simvastatin ile uyarılanTHP-1 makrofajlarında, AMPK yoluna katılan seçilmiş genlerin ekspresyon düzeylerindeki değişikliklerbelirlendi. Agilent’in miRNA Mikroarray platformu, koroner anjiografi sonucunda koroner damarlarındakitıkanıklık oranı belirlenen statin kullanan ve kullanmayan bireylerin (≤30 koroner darlık) plazma miRNA profilinikarşılaştırmak için kullanıldı. MiRDB veritabanı, farklı ekprese olan miRNA’ların AMPK sinyal yolundarol oynayan hedef genlerini belirlemek için kullanıldı. Hedef genlerin ekspresyon değişimleri real-time PCRkullanılarak analiz edildi.Bulgular: Statin ile tedavi olan bireylerde, 5 miRNA’nın ekspresyon düzeylerinin anlamlı derecede azaldığısaptandı (miR-625-5p, miR-550a-3-5p, miR-550b-2-5p, miR-550a-5p, miR-let-7d-5p) (kat değişikliği >1.5, p <0.05). Buna ek olarak, simvastatinin THP-1 makrofajlarında AMPK α1, AMPK α2, AMPK β1, AMPK β2ve SREBF2 ekspresyonlarının artışına neden olduğu gözlendi. MİRDB kullanılarak, AMPK α1,’nin miR-625-5p için güçlü bir aday hedef olduğu gösterildi (Hedef Skor =95) .Sonuç: Elde ettiğimiz sonuçlar göre, statinin miR-625-5p ekspresyonunu azaltması AMPK α1’in indüklenmesiyolu ile kolesterol mekanizmalarının sentez yolunu aktive edebilir. Apoptoz ile ilişkili miR-625, ateroskleroz hastalarında statinlerin tedavi etkinliği için yeni bir belirteç olarak da kullanılabilir.

Microrna-625-5p as a Novel Candidate Modulator of Ampk Pathway in Statin-Treated Individuals Without Coronary Artery Disease

Aim: AMP-activated protein kinase (AMPK) is a signal molecule that phosphorylates and inactivates3-hydroxy-3-methylglutaryl coenzyme A reductase, the key enzyme controlling cholesterol biosynthesis.We aimed to test whether AMPK signaling pathway is effective in human macrophages which play crucialrole in atherosclerosis. In addition, to identify novel modulators of AMPK pathway while exploring the effectof statins on plasma microRNA (miRNA) profile of individuals without coronary artery disease (CAD).Medhod: We measured the expressions of selected genes involved in AMPK pathway in THP-1 macrophagestreated with simvastatin to assess dependence of their expression on cholesterol level. The Agilent’smiRNA Microarray analyses were performed to compare plasma miRNA profile of individuals (≤30%coronary stenosis) treated with and without statin. MiRDB target prediction tool was utilized to identifymiRNA target genes involved in AMPK pathway for differently expressed miRNAs. Expressions of targetgenes were analyzed by using real-time PCR.Results: Significantly decreased expression of 5 miRNAs (miR-625-5p, miR-550a-3-5p, miR-550b-2-5p,miR-550a-5p, miR-let-7d-5p) were observed in individuals receiving statins compared to non-statin group(fold change>1.5, p<0.05). In addition, simvastatin increased the expression of AMPK α1, AMPK α2, AMPKβ1, AMPK β2 and SREBF2 in THP-1 macrophages. Using miRDB target prediction tool, we identifed AMPKα1 is a strong candidate (target score=95) for miR-625-5p.Conclusion: Our results suggests that statin may downregulate the expression of miR-625-5p and induceAMPKα1 expression which in turn may activates cholesterol syntesis pathway. Apoptosis-associated miR-625 may be used as a novel biomarker for effectiveness of statins therapy in patients with atherosclerosis.

___

  • 1. Bostjancic E, Zidar N, Stajer D, Glavac D. “MicroRNAs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction”, Cardiology. 2010;115:163-9. 2. Cerda A, Fajardo CM, Basso RG, Hirata MH, Hirata RD. Role of microRNAs 221/222 on statin induced nitric oxide release in human endothelial cells. Arq Bras Cardiol. 2015;104:195-201. 3. Chen WM, Sheu WH, Tseng PC, Lee TS, Lee WJ, Chang PJ, Chiang AN. Modulation of microRNA Expression in Subjects with Metabolic Syndrome and Decrease of Cholesterol Efflux from Macrophages via microRNA-33-Mediated Attenuation of ATP-Binding Cassette Transporter A1 Expression by Statins. PLoS One. 2016;11:e0154672. 4. Coffey S, Williams MJ, Phillips LV, Galvin IF, Bunton RW, Jones GT. Integrated microRNA and messenger RNA analysis in aortic stenosis. Sci Rep. 2016;6:36904. 5. Dong X, Xu M, Ren Z, Gu J, Lu M, Lu Q, Zhong N. Regulation of CBL and ESR1 expression by microRNA-22‑3p, 513a-5p and 625-5p may impact the pathogenesis of dust mite- induced pediatric asthma. Int J Mol Med. 2016;38:446-56. 6. Elrod JW & Lefer DJ. The effects of statins on endothelium, inflammation and cardioprotection. Drug News Perspect 2005;18:229– 236. 7. Fazi F, Nervi C. MicroRNA: basic mechanisms and transcriptional regulatory Networks for cell fate determination, Cardiovasc Res, 2008;79:553–561. 8. Gits CM, van Kuijk PF, de Rijck JC, Muskens N, Jonkers MB, van IJcken WF, Mathijssen RH, Verweij J, Sleijfer S, Wiemer EA. MicroRNA response to hypoxic stress in soft tissue sarcoma cells: microRNA mediated regulation of HIF3α. BMC Cancer. 2014;14:429. 9. Gopalan V, Smith RA, Lam AK. Downregulation of microRNA-498 in colorectal cancers and its cellular effects. Exp Cell Res. 2015;330:423-8. 10. Han H, Qu G, Han C, Wang Y, Sun T, Li F, Wang J, Luo S.MiR-34a, miR-21 and miR-23a as potential biomarkers for coronary artery disease: a pilot microarray study and confirmation in a 32 patient cohort, Exp Mol Med, 2015;6:47,e138. 11. Hardie DG, Carling D & Carlson M. The AMPactivated/ SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 1998;67: 821–855 12. Haver VG, Slart RH, Zeebregts CJ, Peppelenbosch MP, Tio RA. Rupture of vulnerable atherosclerotic plaques: microRNAs conducting the orchestra?, Trends Cardiovasc Med 2010;20:65-71. 13. Jiang Y, Wang HY, Cao HM, Wang CY, Zhang L, Wang H, Liu L, Li Y, Cai JH. Peripheral blood miRNAs as a biomarker for chronic cardiovascular disease, Sci Rep, 2014;22:4-5026. 14. Motoshima H, Goldstein BJ, Igata M, Araki E. AMPK and cell proliferation--AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol. 2006; 574:63-71. 15. Nathan Wong and Xiaowei Wang miRDB: an online resource for microRNA target prediction and functional annotations. Nucleic Acids Research. 2015;43:46-152. 16. Niesor EJ, Schwartz GG, Perez A, Stauffer A, Durrwell A, Bucklar-Suchankova G, Benghozi R, Abt M, Kallend D. Statin-induced decrease in ATP-binding cassette transporter A1 expression via microRNA33 induction may counteract cholesterol efflux to high-density lipoprotein. Cardiovasc Drugs Ther. 2015;29:7-14. 17. Nouraee N, Mowla SJ. miRNA therapeutics in cardiovascular diseases: promises and problems. Front Genet 2015;30;6:232. 18. Raitoharju E, Lyytikäinen LP, Levula M, Oksala N, Mennander A, Tarkka M, Klopp N, Illig T, Kähönen M, Karhunen PJ, Laaksonen R, Lehtimäki T. miR-21, miR-210, miR-34a, and miR-146a/b are up-regulated in human atherosclerotic plaques in the Tampere Vascular Study”,Atherosclerosis, 2011;219:211-7 19. Roy S, Khanna S, Hussain SR, Biswas S, Azad A, Rink C, Gnyawali S, Shilo S, Nuovo GJ, Sen CK. MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc Res, 2009;82:21–29. 20. Satoh M, Tabuchi T, Minami Y, Takahashi Y, Itoh T, Nakamura M. Expression of let-7i is associated with Toll-like receptor 4 signal in coronary artery disease: effect of statins on let-7i and Toll-like receptor 4 signal. Immunobiology. 2012;217:533-9. 21. Scalbert E, Bril A. Implication of microRNAs in the cardiovascular system. Curr Opin Pharmacol. 2008 ;8:181-8. 22. Strandberg, T.E., Vanhanen, H., Tikkanen, M.J. Effect of statins on C-reactive protein in patients with coronary artery disease. Lancet 1999;353:118–119. 23. Syed Salman A, Chandra Kala, Mohd Abid1, Nabeel Ahmad, Uma Shankar Sharma, Najam Ali Khan Pathological microRNAs in acute cardiovascular diseases and microRNA therapeutics. J. Acute Dis. 2016;5:9–15 24. Tabuchi T, Satoh M, Itoh T, Nakamura M. MicroRNA- 34a regulates the longevity-associated protein SIRT1 in coronary artery disease: effect of statins on SIRT1 and microRNA-34a expression. Clin Sci (Lond). 2012;123:161-71. 25. Van Rooij E, Sutherland LB, Thatcher JE, Di-Maio JM, Naseem RH, Marshall WS, Hill JA, Olson EN. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis, Proc Natl Acad Sci USA, 2008;105:3027–13032. 26. Wang F, Long G, Zhao C, Li H, Chaugai S, Wang Y, Chen C, Wang DW. Atherosclerosis- related circulating miRNAs as novel and sensitive predictors for acute myocardial infarction, PLoS One, 2014;3:9-e105734. 27. Yang B, Lin H, Xiao J, Lu Y, Luo X, Li B, Zhang Y, Xu C, Bai Y, Wang H, Chen G, Wang Z. The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2,Nat Med, 2007;13:486– 491. 28. Yin C, Wang X, Kukreja RC. Endogenous microRNAs induced by heat-shock reduce myocardial infarction following ischemiareperfusion in mice, FEBS Lett, 2008;582:4137–4142.