Examination of the Level of Conus Medullaris Termination Using Magnetic Resonance Imaging

Examination of the Level of Conus Medullaris Termination Using Magnetic Resonance Imaging

Introduction: Recognition of the level of the conus medullaris termination (CMt) is of clinical importance for avoiding iatrogenic injuries during spinal anesthesia and lumbar puncture. Although CMt levels have been examined in a variety of studies, they vary in classical textbooks and literature studies. The aim of this study was to investigate the level of CMt and its correlation to gender, age, and body mass index (BMI) using magnetic resonance imaging (MRI) in healthy individuals and those with lumbar disc herniation. Methods: The lumbar MRIs of 341 subjects, including healthy individuals (F: 123, M: 68) and those with lumbar disc herniation (F: 105, M: 45), were retrospectively examined, and the CMt levels were determined. Results: It was found that CMt levels were most commonly located at upper 1/3 of the L1 vertebral body in both healthy individuals and those with disc herniation groups. No statistically significant difference was observed between the two groups evaluated. In addi tion, no significant mean level of CMt, weight, height, and BMI difference existed between the two groups. Conclusion: In the literature, the highest level of CMt is seen as being at the intervertebral disc between T11 and T12 vertebrae, while the lowest level of the CMt is seen as being at lower 1/3 of the L3 vertebral body. Consequently, we are of the opinion that the L3-4 or L4-5 intervertebral spaces should be preferred to lower the complication rate in procedures such as spinal anesthesia and lumbar puncture.

___

  • 1. Arthurs OJ, Thayyil S, Wade A, Chong WK, Sebire NJ, Taylor AM. Normal ascent of the conus medullaris: A post-mortem foetal MRI study. J Matern Fetal Neonatal Med. 2013;26(7):697-702. [CrossRef]
  • 2. Barson A. The vertebral level of termination of the spinal cord during normal and abnormal development. J Anat. 1970;106(Pt. 3):489.
  • 3. Manzone P, Guidobono JA, Forlino D. Longitudinal development of the spine and spinal cord in human fetuses. Coluna/Columna. 2020;19:8-12. [CrossRef]
  • 4. Standring S. Gray’s Anatomy: The Anatomical Basis of Clinical Practice. 41st ed. Amsterdam: Elsevier, 2016.
  • 5. Demiryu¨ rek D, Aydingo¨ z U, Aksit MD, Yener N, Geyik PO. MR imaging determination of the normal level of conus medullaris. Clin Imaging. 2002;26(6):375-377. [CrossRef]
  • 6. Doherty CM, Forbes RB. Diagnostic lumbar puncture. Ulster Med J. 2014;83(2):93-102. [CrossRef]
  • 7. Ahmad FU, Pandey P, Sharma BS, Garg A. Foot drop after spinal anesthesia in a patient with a low-lying cord. Int J Obstet Anesth. 2006;15(3):233-236. [CrossRef]
  • 8. Reynolds F. Damage to the conus medullaris following spinal anaesthesia. Anaesthesia. 2001;56(3):238-247. [CrossRef]
  • 9. Wenger M, Hauswirth C, Brodhage R. Undiagnosed adult diastematomyelia associated with neurological symptoms following spinal anaesthesia. Anaesthesia. 2001;56(8):764-767. [CrossRef]
  • 10. Greaves JD. Serious spinal cord injury due to haematomyelia caused by spinal anaesthesia in a patient treated with low-dose heparin. Anaesthesia. 1997;52(2):150-154. [CrossRef]
  • 11. Lin N, Bebawy JF, Hua L, Wang BG. Is spinal anaesthesia at L2-L3 interspace safe in disorders of the vertebral column? A magnetic resonance imaging study. Br J Anaesth. 2010;105(6):857-862. [CrossRef]
  • 12. Hoopmann M, Abele H, Yazdi B, Schuhmann M, Kagan K. Prenatal evaluation of the position of the fetal conus medullaris. Ultrasound Obstet Gynecol. 2011;38(5):548-552. [CrossRef]
  • 13. Perlitz Y, Izhaki I, Ben-Ami M. Sonographic evaluation of the fetal conus medullaris at 20 to 24 weeks’ gestation. Prenat Diagn. 2010;30(9):862-864. [CrossRef]
  • 14. Sahin F, Selc¸uki M, Ecin N, et al. Level of conus medullaris in term and preterm neonates. Arch Dis Child Fetal Neonatal Ed. 1997;77(1):F67-F69. [CrossRef]
  • 15. Wolf S, Schneble F, Tro¨ ger J. The conus medullaris: Time of ascendence to normal level. Pediatr Radiol. 1992;22(8):590-592. [CrossRef]
  • 16. Zalel Y, Lehavi O, Aizenstein O, Achiron R. Development of the fetal spinal cord: Time of ascendance of the normal conus medullaris as detected by sonography. J Ultrasound Med. 2006;25(11):1397-1401. [CrossRef]
  • 17. Arai Y, Shitoto K, Takahashi M, Kurosawa H. Magnetic resonance imaging observation of the conus medullaris. Bull Hosp Jt Dis. 2001;60(1):10-12. [CrossRef]
  • 18. Ba Z, Zhao W, Wu D, Huang Y, Kan H. MRI study of the position of the conus medullaris in patients with lumbar spinal stenosis. Orthopedics. 2012;35(6):e899-e902. [CrossRef]
  • 19. Binokay F, Seydaoglu G, Erman T, Akgu¨ l E, Bıc¸akcı K. Relationship between the levels of normal conus medullaris and body mass index in the Turkish adult population. Neurosurg Q. 2013;23(2): 81-84. [CrossRef]
  • 20. Hesarikia H, Azma K, Kousari A, Nikouei F. Magnetic resonance imaging investigations of position of conus medullaris in adolescent idiopathic scoliosis as a peripheral neuropathy. Int J Clin Exp Med. 2015;8(4):5918-5924.
  • 21. Karabulut O, Akay H, Karabulut Z, et al. Conus medullaris position in an adult population: Analysis of magnetic resonance imaging. Int J Morphol. 2016;34(4):1352-1356. [CrossRef]
  • 22. Kershenovich A, Macias OM, Syed F, Davenport C, Moore GJ, Lock JH. Conus medullaris level in vertebral columns with lumbosacral transitional vertebra. Neurosurgery. 2016;78(1):62-70. [CrossRef]
  • 23. Kesler H, Dias MS, Kalapos P. Termination of the normal conus medullaris in children: A whole-spine magnetic resonance imaging study. Neurosurg Focus. 2007;23(2):E7. [CrossRef]
  • 24. Liu A, Yang K, Wang D, et al. Level of conus medullaris termination in adult population analyzed by kinetic magnetic resonance imaging. Surg Radiol Anat. 2017;39(7):759-765. [CrossRef]
  • 25. Mbaba A, Ogolodom M, Abam R, Ijeruh O, Okpaleke M. Magnetic resonance imaging localization of the vertebral level of termination of the spinal cord in adults in Port Harcourt, Rivers State, Nigeria. Arch Med. 2020;12(2):5. [CrossRef]
  • 26. Moon MS, Jeong JH, Kim SJ, Kim MS, Choi WR. Magnetic resonance imaging observations of the conus medullaris in a Korean population. Asian Spine J. 2019;13(2):313-317. [CrossRef]
  • 27. Morimoto T, Sonohata M, Kitajima M, et al. The termination level of the conus medullaris and lumbosacral transitional vertebrae. J Orthop Sci. 2013;18(6):878-884. [CrossRef]
  • 28. Mourlion T, Nkoo S, Monabang Z. Conus medullaris position, dural  sac level and vertebral canal depth on Black African subjects. Afr J Med Far Sci. 2012;31(2):65-78. [CrossRef]
  • 29. Moussallem CD, El Masri H, El-Yahchouchi C, Abou Fakher F, Ibrahim A. Relationship of the lumbar lordosis angle to the level of termination of the conus medullaris and thecal sac. Anat Res Int. 2014;2014:351769. [CrossRef]
  • 30. Naqshi BF, Shah AB, Shahdad S. MRI based study of vertebral level spinal cord termination in north Indian population of Kashmir. GJRA. 2018;7(2):1-2. [CrossRef]
  • 31. Qu Z, Qian B-P, Qiu Y, Zhang Y-P, Hu J, Zhu Z-Z. Does the position of conus medullaris change with increased thoracolumbar kyphosis in ankylosing spondylitis patients? Medicine (Baltimore). 2017;96(6). [CrossRef]
  • 32. Rahmani M, Samghabadi MAS, Bozorg SMV. Magnetic resonance imaging based determination of conus medullaris position in adults. Res J Biol Sci. 2009;4(2):157-159. [CrossRef]
  • 33. Rostamzadeh A, Amiri M, Joghataei MT, Farzizadeh M, Fatehi D. Prevention of diagnostic errors in position of conus medullaris in adult patients. Int J Epidemiol Res. 2015;2(3):118-125.
  • 34. Saifuddin A, Burnett SJ, White J. The variation of position of the conus medullaris in an adult population. A magnetic resonance imaging study. Spine (Phila Pa 1976). 1998;23(13):1452-1456. [CrossRef]
  • 35. Sasaki-Adams DM, Campbell JW, Bajelidze G, Assis MC, Mackenzie WG, Ritter AM. Level of the conus in pediatric patients with skeletal dysplasia. J Neurosurg Pediatrics. 2010;5(5):455-459. [CrossRef]
  • 36. Sevinc O, Is M, Barut C, Eryoruk N, Kiran S, Arifoglu Y. MRI determination of conus medullaris level in an adult population in Turkey. Neuroradiol J. 2006;19(3):375-378. [CrossRef]
  • 37. Soleiman J, Demaerel P, Rocher S, Maes F, Marchal G. Magnetic resonance imaging study of the level of termination of the conus medullaris and the thecal sac: Influence of age and gender. Spine. 2005;30(16):1875-1880. [CrossRef]
  • 38. Sun X, Chu WC, Cheng JC, et al. Do adolescents with a severe idiopathic scoliosis have higher locations of the conus medullaris than healthy adolescents? J Pediatr Orthop. 2008;28(6):669-673. [CrossRef]
  • 39. Tame SJ, Burstal R. Investigation of the radiological relationship between iliac crests, conus medullaris and vertebral level in children. Pediatric Anesth. 2003;13(8):676-680. [CrossRef]
  • 40. Tubbs RS, Elton S, Bartolucci AA, Grabb P, Oakes WJ. The position of the conus medullaris in children with a Chiari I malformation. Pediatr Neurosurg. 2000;33(5):249-251. [CrossRef]
  • 41. Ugale MS, Mayappanavar R, Ugale GM, Survase RG. MRI assessment of conus medullaris termination (CMT) in North Karnataka population. J Evidence Based Med Hlthcare. 2018;1(12):1562- 1568.
  • 42. Wilson DA, Prince JR. MR imaging determination of the location of the normal conus medullaris throughout childhood. Am J Roentgenol. 1989;152(5):1029-1032. [CrossRef]
  • 43. Bauer DF, Shoja MM, Loukas M, Oakes WJ, Tubbs RS. Study of the effects of flexion on the position of the conus medullaris. Childs Nerv Syst. 2008;24(9):1043. [CrossRef]
  • 44. Boonpirak N, Apinhasmit W. Length and caudal level of termination of the spinal cord in Thai adults. Acta Anat (Basel). 1994;149(1):74-78. [CrossRef]
  • 45. Gatonga P, Ogeng’o JA, Awori KO. Spinal cord termination in adult Africans: Relationship with intercristal line and the transumbilical plane. Clin Anat. 2010;23(5):563-565. [CrossRef]
  • 46. Icten N, Memedova E, Su¨ llu¨ Y. Vertebral level of the ending of the spinal cord and its relationship to the length of the vertebral column in northern Turkish neonates. Surg Radiol Anat. 1995;17(4):315-318. [CrossRef]
  • 47. Salbacak A, Bu¨ yu¨ kmumcu M, Malas M, Karabulut A, Seker M. An investigation of the conus medullaris and filum terminale variations in human fetuses. Surg Radiol Anat. 2000;22(2):89-92. [CrossRef]
  • 48. Kwon S, Kim TS, Kim HS, Rhyu IJ. The tip level of the conus medullaris by magnetic resonance imaging and cadaver studies in Korean adults. Korean J Phys Anthropol. 2016;29(2):47-51. [CrossRef]
  • 49. Nasr AY. Vertebral level and measurements of conus medullaris and dural sac termination with special reference to the apex of the sacral hiatus: Anatomical and magnetic resonance imaging radiologic study. Folia Morphol. 2016;75(3):287-299. [CrossRef]
  • 50. Nasr AY. Clinical relevance of conus medullaris and dural sac termination level with special reference to sacral hiatus apex: Anatomical and MRI radiologic study. Anat Sci Int. 2017;92(4):456-467. [CrossRef]
  • 51. Van Schoor AN, Bosman MC, Bosenberg AT. Descriptive study of the differences in the level of the conus medullaris in four different age groups. Clin Anat. 2015;28(5):638-644. [CrossRef]
  • 52. Kothbauer KF, Deletis V. Intraoperative neurophysiology of the conus medullaris and cauda equina. Childs Nerv Syst. 2010;26(2):247-253. [CrossRef]
  • 53. Robbin ML, Filly RA, Goldstein RB. The normal location of the fetal conus medullaris. J Ultrasound Med. 1994;13(7):541-546. [CrossRef]
  • 54. Malas M, Seker M, Salbacak A, Bu¨yu¨ kmumcu M, Karabulut A, Yardimci C. The relationship between the lumbosacral enlargement and the conus medullaris during the period of fetal development and adulthood. Surg Radiol Anat. 2000;22(3-4):163-168. [CrossRef]
  • 55. Ko H-Y. Cauda equina injuries. In Management and Rehabilitation of Spinal Cord Injuries. Singapore: Springer, 2019:197-204.
  • 56. Kingwell SP, Curt A, Dvorak MF. Factors affecting neurological outcome in traumatic conus medullaris and cauda equina injuries. Neurosurg Focus. 2008;25(5):E7. [CrossRef]
  • 57. Yedavalli V, Jain MS, Das D, Massoud TF. Are high lumbar punctures safe? A magnetic resonance imaging morphometric study of the conus medullaris. Clin Anat. 2019;32(5):618-629. [CrossRef]
  • 58. Aldrete JA. Neurologic deficits and arachnoiditis following neuroaxial anesthesia. Acta Anaesthesiol Scand. 2003;47(1):3-12. [CrossRef]
  • 59. Oliver WJ, Shope TC, Kuhns LR. Fatal lumbar puncture: Fact versus fiction-an approach to a clinical dilemma. Pediatrics. 2003;112(3 Pt 1):660. [CrossRef]
  • 60. Pryle B, Carter J, Cadoux-Hudson T. Delayed paraplegia following spinal anaesthesia: Spinal subdural haematoma following dural puncture with a 25 G pencil point needle at T12–L1 in a patient taking aspirin. Anaesthesia. 1996;51(3):263-265. [CrossRef]
  • 61. Cook TM, Counsell D, Wildsmith JA. Major complications of central neuraxial block: Report on the third national audit project of the Royal College of Anaesthetists. Br J Anaesth. 2009;102(2):179-190. [CrossRef]
  • 62. Absalom AR, Martinelli G, Scott NB. Spinal cord injury caused by direct damage by local anaesthetic infiltration needle. Br J Anaesth. 2001;87(3):512-515. [CrossRef]
  • 63. Parry H. Spinal cord damage. Anaesthesia. 2001;56(3):290. [CrossRef]
  • 64. Needles JH. The caudal level of termination of the spinal cord in American whites and American negroes. Anat Rec. 1935;63(4):417- 424. [CrossRef]
  • 65. Reimann AF, Anson BJ. Vertebral level of termination of the spinal cord with report of a case of sacral cord. Anat Rec. 1944;88(1):127- 138. [CrossRef]
  • 66. Young PA, Young PH, Tolbert DL. Basic Clinical Neuroscience. 3rd ed. Netherlands: Wolters Kluwer, 2015.
  • 67. Champney TH. Essential Clinical Neuroanatomy. Hoboken, NJ: John Wiley & Sons, 2015.
  • 68. Cramer GD, Darby SA. Clinical Anatomy of the Spine, Spinal Cord, and ANS-E-Book. Amsterdam: Elsevier Health Sciences, 2017.
  • 69. Waxman SG. Clinical Neuroanatomy. 29th ed. New York, NY: McGraw Hill, 2010.
  • 70. Sabharwal S. Essentials of Spinal Cord Medicine. New York, NY: Demos Medical Publishing, 2013.
  • 71. Mancall EL, Brock DG. Gray’s Clinical Neuroanatomy E-Book. Amsterdam: Elsevier Health Sciences, 2011.
  • 72. Mtui E, Gruener G, Dockery P. Fitzgerald’s Clinical Neuroanatomy and Neuroscience E-Book. Amsterdam: Elsevier Health Sciences, 2015.
  • 73. Schwartz ED, Flanders AE. Spinal Trauma: Imaging, Diagnosis, and Management. Philadelphia, PA: Lippincott Williams & Wilkins, 2007.
  • 74. Jacobson S, Marcus EM, Pugsley S. Neuroanatomy for the Neuroscientist. 3rd ed. Berlin: Springer, 2019.
  • 75. Albert TJ, Vaccaro AR. Physical Examination of the Spine. New York, NY: Thieme, 2005.
  • 76. Standring S. Gray’s Anatomy: The Anatomical Basis of Clinical Practice. 39th ed. London: Churchill Livingstone, 2005.
  • 77. Standring S. Gray’s Anatomy: The Anatomical Basis of Clinical Practice. 40th ed. London: Churchill Livingstone Elsevier, 2008.
  • 78. Kim J-T, Bahk J-H, Sung J. Influence of age and sex on the position of the conus medullaris and Tuffier’s line in adults. Anesthesiology. 2003;99(6):1359-1363. [CrossRef]
  • 79. Schlotterbeck H, Schaeffer R, Dow WA, Touret Y, Bailey S, Diemunsch P. Ultrasonographic control of the puncture level for lumbar neuraxial block in obstetric anaesthesia. Br J Anaesth. 2008;100(2):230-234. [CrossRef]
  • 80. Kettani A, Tachinante R, Tazi A. Evaluation of the iliac crest as anatomic landmark for spinal anaesthesia in pregnant women. Ann Fr Anesth Reanim. 2006;25(5):501-504. [CrossRef]
  • 81. Reina MA, De Andre?s JA, Hadzic A, Prats-Galino A, Sala-Blanch X, Van Zundert AA. Atlas of Functional Anatomy for Regional Anesthesia and Pain Medicine: Human Structure, Ultrastructure and 3D Reconstruction Images. Berlin: Springer, 2014.
  • 82. Sarı S, Aydog˘ an M. As a common cause of back pain: Lumbar disc herniation. TOTB_ ID J. 2015;14:298-304.
European Journal of Therapeutics-Cover
  • ISSN: 2564-7784
  • Başlangıç: 1990
  • Yayıncı: Fatma Taşçı
Sayıdaki Diğer Makaleler

Incidental Maxillary Sinus Pathologies in Asymptomatic Subjects—A CBCT Study

Gogineni Subhas BABU, Shruthi HEGDE, Vidya AJILA, Renita Lorina CASTELINO, Soundarya SAKTHIVEL, Anwesha BISWAS

Knowledge and Use of Traditional Medicinal Animals in the Arba Minch Zuriya District, Gamo Zone, Southern Ethiopia

Mulugeta KEBEBEW, Erchafo MOHAMED, V.B. Meyer ROCHOW

Applications of Photobiomodulation Therapy in Oral Medicine—A Review

G Subhas BABU, Renita Lorina CASTELINO, Kumuda RAO, Mohamed Faizal ASAN, Vaibhav PANDITA

Comparison of the Tricuspid Valve Function with or without Tricuspid Valve Detachment in Closure of Ventricular Septal Defect VSD Closure with Tricuspid Valve Detachment

Mehmet ASAM, Erkan KAYA

Evaluation of Effectiveness and Safety of Everolimus Eluting Stent System (XIENCE V) in the Treatment of Coronary Artery Lesions

Necla ÖZER, Hikmet YORGUN, Kudret AYDEMİR, Mehmet Levent ŞAHİNER, Ugur Nadir KARAKULAK, Ergün Barış KAYA, Ali OTO

ERG Channels Contribute to the Excitability of Pyramidal Neurons in Hippocampal CA1

Ramazan BAL, Caner YILDIRIM, Ziya ÇAKIR

Thyroglossal Duct Cysts: A Clinico-Surgical Experience of 100 Cases

İsmail AYTAÇ, Orhan TUNÇ

Publication Status of Mouse Embryonic Fibroblast Cells in Scientific Journals

Ahmet Sarper BOZKURT

COVID-19 Seroprevalence among Healthcare Workers in a University Hospital in Southeastern Turkey

Tekin KARSLIGİL, Hüseyin AKDOĞAN

Examination of the Level of Conus Medullaris Termination Using Magnetic Resonance Imaging

Ayşe BAHŞİ, İlhan BAHŞİ, Mustafa ORHAN, Merve KALINDEMİRTAŞ