Simfizis Morfolojisinin Sınıf II,1 ve Sınıf II,2 Malokluzyonlarda Karşılaştırmalı Olarak İncelenmesi

Amaç: Bu çalışmanın amacı, derin kapanışa sahip Sınıf II,1 ve Sınıf II,2 malokluzyonlu bireylerde simfizis morfolojisinin, hem rotasyon modellerine hem de malokluzyon tiplerine göre incelenmesidir. Gereç ve Yöntem: Çalışma derin kapanış ve Sınıf II malokluzyonla karakterize 177’si Sınıf II,1 ve 181’i Sınıf II,2 olmak üzere toplam 358 bireyin lateral sefalometrik ve el-bilek radyografileri üzerinde yürütülmüştür. Sınıf II,1 ve Sınıf II,2 malokluzyonlu bireyler ayrıca mandibular plan açıları SN/GoGn dikkate alınarak Hipodiverjan, Normodiverjan ve Hiperdiverjan olmak üzere 3 alt gruba ayrılmıştır. Ayrı ayrı her bir malokluzyon grubunda rotasyon modelleri arasında simfizis morfolojisi bakımından ortaya çıkan farklılıklar ANOVA ve Duncan testleri ile karşılaştırılmıştır. Ayrı ayrı her bir rotasyon modelinde Sınıf II malokluzyonların karşılaştırılmasında ise bağımsız iki grup arası farklılıkların t-testi kullanılmıştır. Bulgular: Derin kapanışla karakterize Sınıf II,1 ve Sınıf II,2 malokluzyonlarda mandibular posterior rotasyonla birlikte simfizis yükseklikleri artmış ve simfizis genişlikleri azalmıştır. Ayrıca mandibular posterior rotasyonla birlikte simfizis mandibular kaideye göre daha dik konumlanmış ve simfizis iç açısı artmıştır. Bunun yanısıra Sınıf II,1 ve Sınıf II,2 malokluzyonlar arasında Hipodiverjan ve Normodiverjan rotasyon modellerinde önemli farklılıklar bulunmamıştır. Hiperdiverjan rotasyon modelinde ise Sınıf II,1 malokluzyonda alt ve total simfizis yüksekliklerinin daha uzun olmasına ve Sınıf II,2 malokluzyonda simfizisin daha düz olmasına bağlı farklılıklar bulunmuştur. Sonuç: Mandibular rotasyon modeli, derin kapanışa sahip Sınıf II,1 ve Sınıf II,2 malokluzyonlarda simfizis yükseklikleri, genişlikleri ve eğimleri üzerinde etkilidir. Ancak Sınıf II,1 ve Sınıf II,2 malokluzyonlar Hiperdiverjan rotasyon modeli haricinde simfizis morfolojisi bakımından benzerdir.

The Comparative Investigation of Symphysıs Morphology In Class II,1 and Class II,2 Malocclusions

Aim: The aim of this study was to investigate the symphysis morphology according to both rotation models and malocclusion types among the Class II,1 and Class II,2 malocclusions seen with deepbite. Material and Method: The study was carried on lateral cepholometric and hand-wrist radiographs of 358 subjects 177 Class II,1 and 181 Class II,2 which were characterized with Class II malocclusion and increased overbite. Both Class II,1 and Class II,2 subjects were divided into three subgroups, as Hypodivergent, Normodivergent and Hyperdivergent, based on their mandibular plane angle SN/GoGn . The morphologic differences of the symphysis among the rotation models were compared with ANOVA and Duncan tests, separately in each malocclusion group. Indepedent samples of t-test was used to compare the Class II malocclusion types in each rotation model. Results: Symphysis heigths were increased and symphysis widths were decreased with mandibular posterior rotation in Class II,1 and Class II,2 malocclusions characterized with deepbite. Also symphysis was more upright positioned according to the mandibular base and symphysis inclination was increased with mandibular posterior rotation. Besides, there were no significant differences between Class II,1 and Class II,2 malocclusions at Hypodivergent and Normodivergent rotation models. But there were significant differences at Hyperdivergent rotation model since the the lower and total symphysis heights were longer in Class II,1 malocclusions and symphysis was flatter in Class II,2 malocclusion. Conclusion: The type of mandibular rotation is effective on symphysis heigths, widths and inclinations in Class II,1 and Class II,2 malocclusions characterized with deepbite. Although Class II,1 and Class II,2 malocclusions are similar with regards to symphysis morphology except Hyperdivergent rotation model

___

  • Björk A. Prediction of mandibular growth rotation. Am. J. Orthod. 1969; 55: 585-599
  • Skieller VB, Bjork A, Linde-Hansen T. Prediction of mandibular growth rotation evaluated from a longitudinal implant sample. Am. J. Orthod. 1984; 86: 359–370.
  • Buschang PH, Julien K, Sachdeva R, Demirjian A. Childhood and pubertal growth changes of the human symphysis. Angle Orthod. 1992; 62: 203–210
  • Aki T, Nanda RS, Currier FG, Nanda KS. Assessment of symphysis morphology as a predictor of the direction of mandibular growth. Am. J. Orthod. Dentofacial Orthop. 1994; 106: 60-69.
  • Sherwood RJ, Hlusko LJ, Duren DL, Emch VC, Walker A. Mandibular sym- physis of large-bodied hominoids. Hum. Biol. 2005; 11: 735–759.
  • Al-Khateeb SN, Al Maaitah EF, Abu Alhaija ES, Badran SA. Mandibular sym- physis morphology and dimensions in dif- ferent anteroposterior jaw relationships. Angle Orthod. 2014; 84: 304-309.
  • Enlow D, Hans MG. Essential of facial growth. 1st ed. Philadelphia: W. B. Saun- ders Company. 1996.
  • Sugito H, Shibukawa Y, Kinumatsu T, Yasuda T, Nagayama M, Yamada S et al. Ihh signaling regulates mandibular sym- physis development and growth. J. Dent. Res. 2011; 90: 625-631.
  • Daegting DJ, Hylander WL. Biomechan- ics of torsion in the human mandible. Am. J. Phys. Anthropol. 1998; 105: 73–87.
  • Von Bremen J, Pancherz H. Association between Björk’s structural signs of man- dibular growth rotation and skeletofacial morphology. Angle Orthod. 2005; 75: 506–509.
  • Yamada C, Kitai N, Kakimoto N, Mura- kami S, Furukawa S, Takada K. Spatial relationships between the mandibular cen- tral incisor and associated alveolar bone in adults with mandibular prognathism. An- gle Orthod. 2007; 77: 766–772.
  • Chung CH, Wong WW. Craniofacial growth in untreated skeletal Class II sub- jects: A longitudinal study. Am. J. Orthod. Dentofacial Orthop. 2002; 122: 619-626.
  • Oz U, Rubenduz M. Craniofacial differ- ences between skeletal Class II and Class I malocclusions according to vertical clas- sification. J. Stomat. Occ. Med. 2011; 4: 105-111.
  • Chung C.J., Jung S., Baik H.S. Morpho- logical Characteristics of the Symphyseal Region in Adult Skeletal Class III Cross- bite and Openbite Malocclusions. Angle Orthod. 2008; 78: 38-43
  • Molina-Berlanga N, Llopis-Perez J, Flo- res-Mir C, Puigdollers A. Lower incisor dentoalveolar compensation and symphy- sis dimensions among Class I and III mal- occlusion patients with different facial vertical skeletal patterns. Angle Orthod. 2013; 83: 948-55.
  • Greulich WW, Pyle IS. Radiographic At- las of Skeletal Development of The Hand and Wrist. 2nd ed. Stanford University Press, Stanford, California. 1959.
  • Helm S, Siersbaek-Nielsen S, Skieller V, Björk A. Skeletal maturation of the hand in relation to maximum puberal growth in body height. Tandlaegebladet. 1971; 75: 1223-34.
  • Garn SM, Lewis B, Vicinus JH. The inher- itance of symphyseal size during growth. Angle Orthod. 1963; 33: 222–231.
  • Haskell BS. The human chin and its rela- tionship to mandibular morphology. An- gle Orthod. 1979; 49: 153–166.,
  • Kubota M, Nakano H, Sanjo I, Satoh K, Sanjo T, Kamegai T, Ishikawa F. Maxillo- facial morphology and masseter muscle thickness in adults. Eur. J. Orthod. 1998; 20: 535–542.4,
  • Beckmann SH, Kuitert RB, Prahl- Andersen B, Segner D, The RP, Tuinzing DB. Alveolar and skeletal dimensions as- sociated with overbite. Am. J. Orthod. Dentofacial Orthop. 1998; 113: 443–452.
  • Nojima K, Nakakawaji K, Sakamoto T, Isshiki Y. Relationships between mandib- ular symphysis morphology and lower in- cisor inclination in skeletal class III mal- occlusion requiring orthognathic surgery. Bull Tokyo Dent Coll. 1998; 39: 175–181.
  • Shimomoto Y, Iwasaki Y, Chung CY, Muramoto T, Soma K. Effects of occlusal stimuli on alveolar/jaw bone formation. J. Dent. Res. 2007; 86: 47–51.
  • Ricketts RM. Cephalometric synthesis. Am. J. Orthod. 1960; 46: 647-73.
  • Sassouni V. A classification of skeletal facial types. Am. J. Orthod. 1969; 55: 109-23.
  • Swasty D, Lee J, Huang JC, Maki K, Gansky SA, Hatcher D, Miller AJ. Cross- sectional human mandibular morphology as assessed in vivo by cone-beam com- puted tomography in patients with differ- ent vertical facial dimensions. Am. J. Or- thod. Dentofacial Orthop. 2011; 139:377- 89
  • Tanaka R, Suzuki H, Maeda H, Koba- yashi K. [Relationship between an inclina- tion of mandibular plane and a morpholo- gy of symphysis]. [Article in Japanese] Abstract Nihon Kyosei Shika Gakkai Zas- shi. 1989; 48: 7-20.
  • Betzenberger D, Ruf S, Pancherz H.. The compensatory mechanism in high-angle malocclusions: a comparison of subjects in the mixed and permanent dentition. Angle Orthod. 1999; 69: 27–32.
  • Kuitert R, Beckmann S, Van Loenen M, Tuinzing B, Zentner A. Dentoalveolar compensation in subjects with vertical skeletal dysplasia. Am. J. Orthod. Den- tofacial Orthop. 2006; 129: 649–657.
  • Öz U, Rübendüz M. The differences of symphysis morphology in Class II maloc- clusions with different vertical growth pattern. Clinical Dentistry And Research 2013; 37: 3-12
  • Handelman CS. The anterior alveolus: its importance in limiting orthodontic treat- ment and its influence on the occurrence of iatrogenic sequelae. Angle Orthod. 1996; 66: 95–110.
  • Hylander WL. In vivo bone strain in the mandible of Galago crassicaudatus. Am. J. Phys. Anthropol. 1977; 46: 309–326.
  • Hylander WL. Stress and strain in the mandibular symphysis of primates: a test of competing hypotheses. Am. J. Phys. Anthropol. 1984; 64: 1–46.
  • Korioth TW, Hannam AG. Deformation of the human mandible during simulated tooth clenching. J. Dent. Res. 1994; 73: 56–66.
  • Endo T, Ozoe R, Kojima K, Shimooka S. Congenitally missing mandibular incisors and mandibular symphysis morphology. Angle Orthod. 2007; 77:1079–1084.
  • Yu Q, Pan XG, Ji GP, Shen G. The asso- ciation between lower incisal inclination and morphology of the supporting alveo- lar bone—a cone-beam CT study. Int. J. Oral Sci. 2009; 1: 217–223
  • Sassouni VA, Nanda SK. Analysis of den- tofacial vertical proportions. Am. J. Or- thod. 1964; 50: 801-823.