The investigation of neuroprotective effects of pomegranate juice against low level lead induced oxidative stress in rats brain

Amaç: Bu çalışmada, düşük düzeyde kurşun (Pb) maruziyetinin sıçanlarda beyin dokusu ve antioksidan sistem üzerinde oluşturduğu hasara karşı nar suyunun (NS) nöroprotektif potansiyelinin araştırılması amaçlandı. Gereç ve Yöntem: Araştırmada kullanılan toplam 40 adet rat, her birinde 10'ar rat bulunan 4 gruba ayrıldı. Kontrol grubu (1), standart rat yemi ve içme suyuyla beslendi. Pozitif kontrol grubuna içme suyuyla günlük 2000 ppm kurşun (kurşun asetat); düşük tedavi grubuna (3), içme suyuyla günlük 2000 ppm kurşun ve gavajla 30 µL NS; yüksek tedavi grubuna (4) ise içme suyuyla günlük 2000 ppm kurşun ve gavajla 60 µL NS verildi. Araştırma 5 hafta sürdürüldü. Sıçan beyinlerinde malondialdehide (MDA) ve glutatyon (GSH) seviyeleri ile süperoksit dismutaz (SOD) ve katalaz (CAT) aktiviteleri belirlendi. Ayrıca beyin dokusunda histopatolojik incelemeler yapıldı. Bulgular: Nar suyu kurşunun sebep olduğu lipid peroksidasyonu azaltarak (düşük MDA düzeyi) antioksidan enzim (SOD ve CAT) aktivitelerini ve GSH düzeyini artırarak oksidatif stresi hafifletti. Sadece kurşun alan grupta şiddetli nörodejeneratif değişiklikler görüldü. Nar suyunun, kurşunun beyin dokusunda oluşturduğu hücresel hasarı kısmen önlediği belirlendi.Öneri: Düzenli nar suyu tüketimi artan yoğun sanayileşmeden kaynaklanan kronik kurşun maruziyetine karşı faydalı olabilir.

Düşük seviyede kurşunun ratların beyin dokusunda oluşturduğu oksidatif strese karşı nar suyunun nöroprotektif etkilerinin araştırılması.

Aim: The aim of the study was to investigate the neuroprotective potential of pomegranate juice (PJ) against the damage of brain tissue and antioxidant system induced low level lead (Pb) exposure in rats. Materials and Methods: A total of 40 rats were divided into four groups containing 10 rats in each. The control group (1) was fed standart rat feed and daily water. A positive control group (2) received a daily dose of 2000 ppm lead (lead acetate) in drinking water; a low treatment group (3) that received a daily dose of 2000 ppm lead together with 30 µL PJ by oral gavage; and a high treatment group (4) that received 2000 ppm lead and 60 µL PJ by oral gavage daily. The experiment was lasted for 5 weeks. Levels of malondialdehyde (MDA) and glutathione (GSH) were determined as well as the activities of superoxide dismutase (SOD) and catalase (CAT). Morever, histopathological examination was also performed in the brain of the rats. Results: Pomagranete juice alleviated oxidative stress by decreasing lipid peroxidation ( low MDA level) and increasing the activities of antioxidant enzymes (SOD and CAT) and GSH level in the rats exposed to lead. Severe neurodejenerative changes were observed in only groups received lead. Cellular damage of the brain was partially prevented by PJ. Conclusion: Regular consumption of pomegranate juice may provide significant benefits against the threat of chronic heavy metal exposure due to increasing intensive industrialization.

___

  • Adonaylo VN, Oteiza PI, 1999. Lead intoxication: Antioxidant defenses and oxidative damage in rat brain. Toxicology, 135, 77-85.
  • Aebi H, 1984. Catalase in vitro. Methods Enzymol, 105, 121- 126.
  • Aksu DS, Didin M, Kayıkçı F, 2012. The protective role of poly- phenols on blood cells in rats exposed to lead. RRLM, 20, 47-57.
  • Arslan HH, Saripinar-Aksu D, Ozdemır S, Yavuz O, Or ME, Ba- rutcu UB, 2011. Evaluation of the relationship of blood he- avy metal, trace element levels and antioxidative metabo- lism in cattle which are living near the trunk roads. Kafkas Univ Vet Fak Derg, 17 (Suppl A), 77-82.
  • Aviram M, Dornfeld L, Rosenblat M, Volkova N, Kaplan M, Co- leman R, Hayek T, Presser D, Fuhrman B, 2000. Pomegrana- te juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am J Clin Nutr, 71, 1062-1076.
  • Bakulski KM, Rozek LS, Dolinoy DC, Paulson HL, Hu H, 2012. Alzheimer's disease and environmental exposure to lead: The epidemiologic evidence and potential role of epigene- tics. Curr Alzheimer Res, 9, 563-573.
  • Coon S, Stark A, Peterson E, Gloi A, Kortsha G, Pounds J, Chett- le D, Gorell J, 2006. Whole-body life-time occupational lead exposure and risk of Parkinson's disease. Environ Health Perspect, 114, 1872-1876.
  • Dixit AK, Bhatnagar D, Kumar V, Chawla D, Fakhruddin K, Bhatnagar D, 2012. Antioxidant potential and radiopro- tective effect of soy isoflavone against gamma irradiation induced oxidative stress. J Funct Food, 4, 197-206. P 0.001 0.001 0.001 0.001.
  • Espin JC, Garcia-Conesa MT, Tomas-Barberan FA, 2007. Nutraceuticals: Facts and fiction. Phytochemistry, 68, 2896- 3008.
  • Flora SJS, Pande M, Kannan GM, Mehta A, 2004. Lead induced oxidative stress and its recovery following coadministration of melatonin or n-acetlylcysteine during chelation with succimer in male rats. Cell Mol Biol 50.online OL543-551
  • Gurer H, Ercal N, 2000. Can antioxidants be benefical in the treatment of lead poisoning? Free Radic Biol Med, 29, 927- 945.
  • Hsu PC, Guo YL, 2002. Antioxidant nutrients and lead toxicity. Toxicology, 180, 33-44.
  • Kaplan M, Hayek T, Raz A, Coleman R, Dornfeld L, Vaya J, Aviram M, 2001. Pomegranate juice supplementation to atherosclerotic mice reduces macrophage lipid peroxidation. Cellular Cholesterol Accumulation and Development of Atherosclerosis. J Nutr, 131, 2082-2089.
  • Kelsey NA, Wilkins HM, Linseman DA, 2010. Nutraceutical antioxidants as novel neuroprotective agents. Molecules, 15, 7792-7814.
  • Lidisky TI, Schneider JS, 2003. Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain Rev, 126, 5-19.
  • Liu C, Mab J, Sun Y, 2011. Protective role of puerarin on leadinduced alterations of the hepatic glutathione antioxidant system and hyperlipidemia in rats. Food Chem Toxicol, 49, 3119-3127.
  • Ough CS, Amerine MA, 1988. Methods for analysis of musts and wines. 2nd edition, A Wiley Interscience publication, New York, USA, p: 377.
  • Perez FJ, Villegas D, Mejia N, 2002. Ascorbic acid and flavonoid-peroxidase reaction as a detoxifying system of H2O2 in grapevine leaves. Phytochemistry, 60, 573-580.
  • Poyrazoğlu E, Gökmen V, Artik N, 2002. Organic acids and phenolic compounds in pomegranates (Punica granatum L.) grown in Turkey. J Food Compos Anal, 15, 567-575.
  • Presnell J, Schreibman MP, 1997. Animal tissue techniques. 5th edition, The Johns Hopkins University Pres Ltd, London, UK, pp: 269-271.
  • Radad K, Hassanein K, Al-Shraim M, Moldizor R, Rausch WD, 2014. Thymoquinone ameliorates lead-induced brain damage in Sprague dawley rats. Exp Toxicol Pathol, 66, 13-17.
  • Reckziegel P, Dias VT, Benvegnu D, Boufleur N, Barcelos RCS, Segat HJ, Pase CS, Moreira dos Santos CM, Flores ÉMM, Bürger ME, 2011. Locomotor damage and brain oxidative stress induced by lead exposure are attenuated by gallic acid treatment. Toxicol Lett, 203, 74-81.
  • Sanfeliu C, Sebastia J, Kim SU, 2001. Methylmercury neurotoxicity in cultures of human neurons, astrocytes, neuroblastoma cells. Neurotoxicology, 22, 317-327.
  • Sedlak J, Lindsay RH, 1967. Estimation of total protein-bound and nonprotein sulfhydryl groups in tissue with Ellman's reagent. Anal Biochem, 25, 192-205.
  • Sharma V, Sharma A, Kansal L, 2010. The effect of oral administration of Allium sativum extracts on lead nitrate induced toxicity in male mice. Food ChemToxicol, 48, 928-936.
  • SunY, Oberley LW, Ying L, 1988. A simple method for clinical assay of superoxide dismutase. Clin Chem, 34, 497-500.
  • Villeda-Hernandez J, Barroso-Moguel R, Mendez-Armenta M, Nava-Ruiz C, Huerta-Romero R, Riod S, 2001. Enhanced brain regional lipid peroxidation in developing rats exposed to low level lead acetate. Brain Res Bull, 55, 247-251.
  • Xia D, Yu X, Liao S, Shao Q, Mou H, Ma W, 2010. Protective effect of Smilax glabra extract against lead-induced oxidative stress in rats. J Ethnopharmacol, 130, 414-420.
  • Yamasaki H, Sakihama Y, Ikehara N, 1997. Flavonoid-peroxidase reactions as a detoxification mechanism of plant cells against H2O2. Plant Physiol, 115, 1405-1412.
  • Yoshoiko T, Kawada K, Shimada T, 1979. Lipid peroxidation in maternal and cord blood and protective mechanism againist active-oxygen toxicity in the blood. Am J Obstet Gynecol, 135, 372-376.
Eurasian Journal of Veterinary Sciences-Cover
  • ISSN: 1309-6958
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Selçuk Üniversitesi Veteriner Fakültesi