A review on nanobioremediation approaches for restoration of contaminated soil

Nanotechnological approaches are emerging as one of the most contemporary restoration strategies that may be used to remove a variety of contaminants from the environment, including heavy metals, organic and inorganic pollutants. The application of nanoparticles (NPs) is entrenched with biological processes to boost up the removal of toxic compounds from contaminated soils. Many efforts have been taken to increase the effectiveness of phytoremediation such as the addition of chemical additives, application of rhizobacteria, and genetic engineering, etc. In this context, the integration of nanotechnology with bioremediation has introduced new dimensions to the reclamation methods. Thus, advanced remediation methods that combine nanotechnology with phytoremediation and bioremediation, where nano-scale process regulation aids in the absorption and breakdown of pollutants. NPs absorb/adsorb a variety of contaminants and also catalyze reactions by lowering the energy required for their breakdown due to unique surface properties. As a result, these nanobioremediation procedures decrease the accumulation of contaminants while simultaneously limiting their dispersal from one medium to another. Therefore, the present review is dealing with all the possibilities of the application of NPs for restoration of contaminated soils.

___

  • Aboelfetoh, E.F., El-Shenody, R.A., Ghobara, M.M., 2017. Eco-friendly synthesis of silver nanoparticles using green algae (Caulerpa serrulata): reaction optimization, catalytic and antibacterial activities. Environmental Monitoring and Assessment 189: 349.
  • Adesoji, T.O., Egyir, B., Shittu, A.O., 2020. Antibiotic-resistant staphylococci from the wastewater treatment plant and grey-water samples in Obafemi Awolowo University, Ile-Ife, Nigeria. Journal of Water & Health 18(6): 890-898.
  • Adikesavan, S., Nilanjana, D., 2016. Degradation of cefdinir by Candida Sp. SMN04 and MgO nanoparticles—An integrated (Nano-Bio) approach. Environmental Progress & Sustainable Energy 35(3): 706-714.
  • Agarry, S.E., Solomon, B.O., 2008. Kinetics of batch microbial degradation of phenols by indigenous Pseudomonas fluorescence. International Journal of Environmental Science & Technology 5: 223-232.
  • Alabresm, A., Chen, Y.P., Decho, A.W., Lead, J., 2018. A novel method for the synergistic remediation of oil-water mixtures using nanoparticles and oil-degrading bacteria. Science of The Total Environment 630: 1292-1297.
  • Alharbi, O.M.L., Khattab, R.A., Ali, I., 2018. Health and environmental effects of persistent organic pollutants. Journal of Molecular Liquids 263: 442-453.
  • Ali, H., Khan, E., Sajad, M.A., 2013. Phytoremediation of heavy metals—concepts and applications. Chemosphere 91(7): 869-881.
  • Amoatey, P., Baawain, M.S., 2019. Effects of pollution on freshwater aquatic organisms. Water Environment Research 91(10): 1272-1287.
  • Ansari, F., Grigoriev, P., Libor, S., Tothill, I.E., Ramsden, J.J., 2009. DBT degradation enhancement by decorating Rhodococcus erythropolis IGST8 with magnetic Fe3O4 nanoparticles. Biotechnology and Bioengineering 102(5): 1505-1512.
  • Asaduzzaman, M.M., Hossain, F., Li, X., Quan, H., 2016. A study on the effects of pre-treatment in dyeing properties of cotton fabric and impact on the environment. Journal of Textile Science & Engineering 6(5): 1000274.
  • Awad, Y.M., Vithanage, M., Niazi, N.K., Rizwan, M., Rinklebe, J., Yang, J.E., Ok, Y.S., Lee, S.S., 2019. Potential toxicity of trace elements and nanomaterials to Chinese cabbage in arsenic- and lead-contaminated soil amended with biochars. Environmental Geochemistry and Health 41: 1777-1791.
  • Aziz, N., Faraz, M., Pandey, R., Shakir, M., Fatma, T., Varma, A., Barman, I., Prasad, R., 2015. Facile algae-derived route to biogenic silver nanoparticles: Synthesis, antibacterial, and photocatalytic properties. Langmuir 31: 11605-11612.
  • Baig, M.M., Zulfiqar, S., Yousuf, M.A., Shakir, I., Aboud, M.F.A., Warsi, M.F., 2021. DyxMnFe2-xO4 nanoparticles decorated over mesoporous silica for environmental remediation applications. Journal of Hazardous Materials 402: 123526.
  • Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., Rizzolio, F., 2019. he History of nanoscience and nanotechnology: from chemical–physical applications to nanomedicine. Molecules 25: 112.
  • Bhargava, A., Jain, N., Khan, M.A., Pareek, V., Dilip, R.V., Panwar, J., 2016. Utilizing metal tolerance potential of soil fungus for efficient synthesis of gold nanoparticles with superior catalytic activity for degradation of rhodamine B. Journal of Environmental Management 183: 22-32.
  • Bokare, V., Murugesan, K., Kim, J.H., Kim, E.J., Chang, Y.S., 2012. Integrated hybrid treatment for the remediation of 2,3,7,8-tetrachlorodibenzo-p-dioxin. Science of The Total Environment 435-436: 563-566.
  • Bokare, V., Murugesan, K., Kim, Y.M., Jeon, J.R., Kim, E.J., Chang, Y.S., 2010. Degradation of triclosan by an integrated nano-bio redox process. Bioresource Technology 101(16): 6354-6360.
  • Burachevskaya, M., Nevidomskaya, D., Tsitsuashvili, V., Rajput, V., Bren, D., 2020. Lead compounds in bottom sediments of the Seversky Donets floodplain. E3S Web of Conferences 169: 01004.
  • Cao, B., Nagarajan, K., Loh, K.C., 2009. Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Applied Microbiology and Biotechnology 85: 207-282.
  • Cecchin, I., Reddy, K.R., Thome, A., Tessaro, E.F., Schnaid, F., 2017. Nanobioremediation: Integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. International Biodeterioration & Biodegradation 119: 419-428.
  • Chauhan, R., Yadav, H.O.S., Sehrawat, N., 2020. Nanobioremediation: A new and a versatile tool for sustainable environmental clean up-Overview. Journal of Materials and Environmental Sciences 11(4): 564-573.
  • Chen, M., Qin, X., Zeng, G., 2016. Single-walled carbon nanotube release affects the microbial enzyme-catalyzed oxidation processes of organic pollutants and lignin model compounds in nature. Chemosphere 163: 217-226.
  • Chen, M., Sun, Y., Liang, J., Zeng, G., Li, Z., Tang, L., Zhu, Y., Jiang, D., Song, B., 2019. Understanding the influence of carbon nanomaterials on microbial communities. Environment International 126: 690-698.
  • Cheng, P., Zhang, S., Wang, Q., Feng, X., Zhang, S., Sun, Y., Wang, F., 2021. Contribution of nano-zero-valent iron and arbuscular mycorrhizal fungi to phytoremediation of heavy metal-contaminated Soil. Nanomaterials 11(5): 1264.
  • Chidambaram, D., Hennebel, T., Taghavi, S., Mast, J., Boon, N., Verstraete, W., van der Lelie, D., Fitts, J.P., 2010. Concomitant microbial generation of palladium nanoparticles and hydrogen to immobilize chromate. Environmental Science & Technology 44: 7635-7640.
  • Ding, L., Li, J., Liu, W., Zuo, Q., Liang, S.X., 2017. Influence of nano-hydroxyapatite on the metal bioavailability, plant metal accumulation and root exudates of ryegrass for phytoremediation in lead-polluted soil. International Journal of Environmental Research and Public Health 14(5): 532.
  • Duran, N., Marcato, P.D., Alves, O.L., Da Silva, J.P.S., De Souza, G.I.H., Rodrigues, F.A., Esposito, E., 2010. Ecosystem protection by effluent bioremediation: silver nanoparticles impregnation in a textile fabrics process. Journal of Nanoparticle Research 12: 285-292.
  • Duran, N.M., Savassa, S.M., Lima, R.G., de Almeida, E., Linhares, F.S., van Gestel, C.A.M., Pereira de Carvalho, H.W., 2017. X-ray spectroscopy uncovering the effects of cu based nanoparticle concentration and structure on phaseolus vulgaris germination and seedling development. Journal of Agricultural and Food Chemistry 65: 7874-7884.
  • Ebbs, S.D., Kochian, L.V., 1998. Phytoextraction of zinc by oat (Avena sativa), barley (Hordeum vulgare), and indian mustard (Brassica juncea). Environmental Science & Technology 32: 802-806.
  • Edison, T.N.J.I., Atchudan, R., Kamal, C., Lee, Y.R., 2016. Caulerpa racemosa: a marine green alga for eco-friendly synthesis of silver nanoparticles and its catalytic degradation of methylene blue. Bioprocess and Biosystems Engineering 39: 1401-1408.
  • Ekta, P., Modi, N.R., 2018. A review of phytoremediation. Journal of Pharmacognosy and Phytochemistry 7(4): 1485-1489.
  • El-Sheshtawy, H.S., Ahmed, W., 2017. Bioremediation of crude oil by Bacillus licheniformis in the presence of different concentration nanoparticles and produced biosurfactant. International Journal of Environmental Science and Technology 14: 1603-1614.
  • Eroglu, E., Chen, X., Bradshaw, M., Agarwal, V., Zou, J., Stewart, S.G., Duan, X., Lamb, R.N., Smith, S.M., Raston, C.L., Iyer, K.S., 2013. Biogenic production of palladium nanocrystals using microalgae and their immobilization on chitosan nanofibers for catalytic applications. RSC Advances 3: 1009-1012.
  • Fernández-Luqueño, F., Medina-Pérez, G., López-Valdez, F., Gutiérrez-Ramírez, R., Campos-Montiel, R.G., Vázquez-Núñez, E., Loera-Serna, S., Almaraz-Buendia, I., Del Razo-Rodríguez, O.E., Madariaga-Navarrete, A., 2018. Use of Agronanobiotechnology in the Agro-Food Industry to Preserve Environmental Health and Improve the Welfare of Farmers. In: Agricultural Nanobiotechnology. López-Valdez, F., Fernández-Luqueño, F. (Eds.). Springer, Cham. pp. 3-16.
  • Fraceto, L.F., Grillo, R., de Medeiros, G.A., Scognamiglio, V., Rea, G., Bartolucci, C., 2016. Nanotechnology in agriculture: Which innovation potential does it have? Frontiers in Environmental Science 4:20.
  • Fulekar, J., Dutta, D.P., Pathak, B., Fulekar, M.H., 2018. Novel microbial and root mediated green synthesis of TiO2 nanoparticles and its application in wastewater remediation. Journal of Chemical Technology & Biotechnology 93: 736-743.
  • Furgal, K.M., Meyer, R.L., Bester, K., 2015. Removing selected steroid hormones, biocides and pharmaceuticals from water by means of biogenic manganese oxide nanoparticles in situ at ppb levels. Chemosphere 136: 321-326.
  • Ganapathy Selvam, G., Sivakumar, K., 2015. Phycosynthesis of silver nanoparticles and photocatalytic degradation of methyl orange dye using silver (Ag) nanoparticles synthesized from Hypnea musciformis (Wulfen) J.V. Lamouroux. Applied Nanoscience 5: 617-622.
  • Ghazaryan, K., Movsesyan, H., Gevorgyan, A., Minkina, T., Sushkova, S., Rajput, V., Mandzhieva, S., 2020. Comparative hydrochemical assessment of groundwater quality from different aquifers for irrigation purposes using IWQI: A case-study from Masis province in Armenia. Groundwater for Sustainable Development 11: 100459.
  • Ghazaryan, K.A., Movsesyan, H.S., Khachatryan, H.E., Ghazaryan, N.P., Minkina, T.M., Sushkova, S.N., Mandzhieva, S.S., Rajput, V.D., 2018. Copper phytoextraction and phytostabilization potential of wild plant species growing in the mine polluted areas of Armenia. Geochemistry: Exploration, Environment, Analysis 19: 155-163.
  • Ghazaryan, K.A., Movsesyan, H.S., Minkina, T.M., Sushkova, S.N., Rajput, V.D., 2019. The identification of phytoextraction potential of Melilotus officinalis and Amaranthus retroflexus growing on copper- and molybdenum-polluted soils. Environmental Geochemistry and Health 43: 1327-1335.
  • Gong, X., Huang, D., Liu, Y., Zeng, G., Wang, R., Wan, J., Zhang, C., Cheng, M., Qin, X., Xue, W., 2017. Stabilized nanoscale zerovalent iron mediated cadmium accumulation and oxidative damage of Boehmeria nivea (L.) Gaudich cultivated in cadmium contaminated sediments. Environmental Science & Technology 51: 11308-11316.
  • Guerra, F.D., Attia, M.F., Whitehead, D.C., Alexis, F., 2018. Nanotechnology for environmental remediation: Materials and applications. Molecules 23(7): 1760.
  • Handy, R.D., von der Kammer, F., Lead, J.R., Hassellov, M., Owen, R., Crane, M., 2008. The ecotoxicology and chemistry of manufactured nanoparticles. Ecotoxicology 17: 287-314.
  • Hu, W., Culloty, S., Darmody, G., Lynch, S., Davenport, J., Ramirez-Garcia, S., Dawson, K.A., Lynch, I., Blasco, J., Sheehan, D., 2014. Toxicity of copper oxide nanoparticles in the blue mussel, Mytilus edulis: a redox proteomic investigation. Chemosphere 108: 289-299.
  • Huang, D., Qin, X., Peng, Z., Liu, Y., Gong, X., Zeng, G., Huang, C., Cheng, M., Xue, W., Wang, X., 2018. Nanoscale zero-valent iron assisted phytoremediation of Pb in sediment: Impacts on metal accumulation and antioxidative system of Lolium perenne. Ecotoxicology and Environmental Safety 153: 229-237.
  • Ibrahim, R.K., Hayyan, M., AlSaadi, M.A., Hayyan, A., Ibrahim, S., 2016. Environmental application of nanotechnology: air, soil, and water. Environmental Science and Pollution Research 23: 13754-13788.
  • Jiang, D., Zeng, G., Huang, D., Chen, M., Zhang, C., Huang, C., Wan, J., 2018. Remediation of contaminated soils by enhanced nanoscale zero valent iron. Environmental Research 163: 217-227.
  • Jin, Y., Liu, W., Li, X., Shen, S.G., Liang, S.X., Liu, C., Shan, L., 2016. Nano-hydroxyapatite immobilized lead and enhanced plant growth of ryegrass in a contaminated soil. Ecological Engineering 95: 25-29.
  • Jindrova, E., Chocova, M., Demnerova, K., Brenner, V., 2002. Bacterial aerobic degradation of benzene, toluene, ethylbenzene and xylene. Folia Microbiologica 47: 83-93.
  • Joshi, A., Kanthaliya, B., Rajput, V., Minkina, T., Arora, J., 2020. Assessment of phytoremediation capacity of three halophytes: Suaeda monoica, Tamarix indica and Cressa critica. Biologia Futura 71: 301-312.
  • Juárez-Maldonado, A., Ortega-Ortíz, H., Morales-Díaz, A.B., González-Morales, S., Morelos-Moreno, Á., Cabrera-De la Fuente, M., Sandoval-Rangel, A., Cadenas-Pliego, G., Benavides-Mendoza, A., 2019. Nanoparticles and Nanomaterials as Plant Biostimulants. International Journal of Molecular Sciences 20(1): 162.
  • Juwarkar, A.A., Singh, S.K., Mudhoo, A., 2010. A comprehensive overview of elements in bioremediation. Reviews in Environmental Science and Bio/Technology 9: 215-288.
  • Kang, J., Duan, X., Wang, C., Sun, H., Tan, X., Tade, M.O., Wang, S., 2018. Nitrogen-doped bamboo-like carbon nanotubes with Ni encapsulation for persulfate activation to remove emerging contaminants with excellent catalytic stability. Chemical Engineering Journal 332: 398-408.
  • Kanwar, V.S., Sharma, A., Srivastav, A.L., Rani, L., 2020. Phytoremediation of toxic metals present in soil and water environment: a critical review. Environmental Science and Pollution Research 27: 44835–44860.
  • Kaur, R., Bhatti, S.S., Singh, S., Singh, J., Singh, S., 2018. Phytoremediation of heavy metals using cotton plant: A field analysis. Bulletin of Environmental Contamination and Toxicology 101: 637-643.
  • Khan, S.H., Pathak, B., 2020. Zinc oxide based photocatalytic degradation of persistent pesticides: A comprehensive review. Environmental Nanotechnology, Monitoring & Management 13: 100290.
  • Kharissova, O.V., Dias, H.V.R., Kharisov, B.I., Pérez, B.O., Pérez, V.M.J., 2013. The greener synthesis of nanoparticles. Trends in Biotechnology 31(4): 240-248.
  • Kim, Y.M., Murugesan, K., Chang, Y.Y., Kim, E.J., Chang, Y.S., 2012. Degradation of polybrominated diphenyl ethers by a sequential treatment with nanoscale zero valent iron and aerobic biodegradation. Journal of Chemical Technology and Biotechnology 87: 216-224.
  • Kolesnikov, S., Tsepina, N., Minnikova, T., Kazeev, K., Mandzhieva, S., Sushkova, S., Minkina, T., Mazarji, M., Singh, R.K., Rajput, V.D., 2021. Influence of silver nanoparticles on the biological indicators of Haplic chernozem. Plants 10(5): 1022.
  • Konnova, S.A., Lvov, Y.M., Fakhrullin, R.F., 2016. Nanoshell assembly for magnet-responsive oil-degrading bacteria. Langmuir 32: 12552-12558.
  • Koul, B., Poonia, A.K., Yadav, D., Jin, J.O., 2021. Microbe-mediated biosynthesis of nanoparticles: Applications and future prospects. Biomolecules 11(6): 886.
  • Koul, B., Taak, P., 2018. Biotechnological strategies for effective remediation of polluted soils. Springer, Singapore, 240p.
  • Kranjc, E., Drobne, D., 2019. Nanomaterials in plants: A review of hazard and applications in the agri-food sector. Nanomaterials 9(8): 1094.
  • Kulkarni, M., Chaudhari, A., 2007. Microbial remediation of nitro-aromatic compounds: an overview. Journal of Environmental Management 85: 496-512.
  • Kumar, H., Sinha, S.K., Goud, V.V., Das, S., 2019. Removal of Cr(VI) by magnetic iron oxide nanoparticles synthesized from extracellular polymeric substances of chromium resistant acid-tolerant bacterium Lysinibacillus sphaericus RTA-01. Journal of Environmental Health Science and Engineering 17: 1001-1016.
  • Kumar, P., Kumar, A., Kumar, R., 2021. Phytoremediation and Nanoremediation. In: New frontiers of nanomaterials in environmental science. Kumar, R., Kumar, R., Kaur, G. (Eds.). Springer Singapore. pp. 281-297.
  • Kumari, A., Kumari, P., Rajput, V.D., Sushkova, S.N., Minkina, T., 2021. Metal(loid) nanosorbents in restoration of polluted soils: geochemical, ecotoxicological, and remediation perspectives. Environmental Geochemistry and Health (In press).
  • Kumari, V., Tripathi, A.K., 2020. Remediation of heavy metals in pharmaceutical effluent with the help of Bacillus cereus-based green-synthesized silver nanoparticles supported on alumina. Applied Nanoscience 10: 1709-1719.
  • Le, T.T., Nguyen, K.H., Jeon, J.R., Francis, A.J., Chang, Y.S., 2015. Nano/bio treatment of polychlorinated biphenyls with evaluation of comparative toxicity. Journal of Hazardous Materials 287: 335-341.
  • Li, H., Chi, Z., Yan, B., 2019. Long-term impacts of graphene oxide and Ag nanoparticles on anammox process: Performance, microbial community and toxic mechanism. Journal of Environmental Sciences 79: 239-247.
  • Liang, J., Yang, Z., Tang, L., Zeng, G., Yu, M., Li, X., Wu, H., Qian, Y., Li, X., Luo, Y., 2017. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Chemosphere 181: 281-288.
  • Litvinov, Y., Shipkova, G., Rajput, V., Bakoyev, S., Sushkova, S., Mandzhieva, S., Minkina, T., Mischenko, N., Kalinichenko, V., Endovitsky, A., Batukaev, A., 2017. Cadmium status in chernozem of the Krasnodar Krai (Russia) after the application of phosphogypsum. Proceedings of the Estonian Academy of Sciences 66: 501-515.
  • Liu, L., Li, W., Song, W., Guo, M., 2018a. Remediation techniques for heavy metal-contaminated soils: Principles and applicability. Science of The Total Environment 633: 206-219.
  • Liu, W., Zuo, Q., Zhao, C., Wang, S., Shi, Y., Liang, S., Zhao, C., Shen, S., 2018b. Effects of Bacillus subtilis and nanohydroxyapatite on the metal accumulation and microbial diversity of rapeseed (Brassica campestris L.) for the remediation of cadmium-contaminated soil. Environmental Science and Pollution Research 25: 25217-25226.
  • Lv, Y., Niu, Z., Chen, Y., Hu, Y., 2017. Bacterial effects and interfacial inactivation mechanism of nZVI/Pd on Pseudomonas putida strain. Water Research 115: 297-308.
  • Martins, M., Mourato, C., Sanches, S., Noronha, J.P., Crespo, M.T.B., Pereira, I.A.C., 2017. Biogenic platinum and palladium nanoparticles as new catalysts for the removal of pharmaceutical compounds. Water Research 108: 160-168.
  • Mboyi, A.V., Kamika, I., Momba, M.B., 2017. Detrimental effects of commercial zinc oxide and silver nanomaterials on bacterial populations and performance of wastewater systems. Physics and Chemistry of the Earth, Parts A/B/C 100: 158-169.
  • Midhat, L., Ouazzani, N., Hejjaj, A., Ouhammou, A., Mandi, L., 2019. Accumulation of heavy metals in metallophytes from three mining sites (Southern Centre Morocco) and evaluation of their phytoremediation potential. Ecotoxicology and Environmental Safety 169: 150-160.
  • Minkina, T., Rajput, V., Fedorenko, G., Fedorenko, A., Mandzhieva, S., Sushkova, S., Morin, T., Yao, J., 2019. Anatomical and ultrastructural responses of Hordeum sativum to the soil spiked by copper. Environmental Geochemistry and Health 42: 45–58.
  • Moameri, M., Khalaki, M.A., 2019. Capability of Secale montanum trusted for phytoremediation of lead and cadmium in soils amended with nano-silica and municipal solid waste compost. Environmental Science and Pollution Research 26: 24315-24322.
  • Modi, S., Pathak, B., Fulekar, M., 2015. Microbial synthesized silver nanoparticles for decolorization and biodegradation of azo dye compound. Journal of Environmental Nanotechnology 4: 37-46.
  • Momeni, S., Nabipour, I., 2015. A simple green synthesis of palladium nanoparticles with Sargassum Alga and their electrocatalytic activities towards hydrogen peroxide. Applied Biochemistry and Biotechnology 176: 1937-1949.
  • Nancharaiah, Y.V., Dodge, C., Venugopalan, V.P., Narasimhan, S.V., Francis, A.J., 2010. Immobilization of Cr(VI) and its reduction to Cr(III) phosphate by granular biofilms comprising a mixture of microbes. Applied and Environmental Microbiology 76: 2433-2438.
  • Navarro, E., Baun, A., Behra, R., Hartmann, N.B., Filser, J., Miao, A.J., Quigg, A., Santschi, P.H., Sigg, L., 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology 17: 372-386.
  • Nzila, A., Razzak, S.A., Zhu, J., 2016. Bioaugmentation: An emerging strategy of industrial wastewater treatment for reuse and discharge. International Journal of Environmental Research and Public Health 13(9): 846
  • Oyewole, O., Raji, R., Musa, I., Enemanna, C., Abdulsalam, O., Yakubu, J., 2019. Enhanced degradation of crude oil with Alcaligenes faecalis ADY25 and iron oxide nanoparticle. International Journal of Applied Biological Research 10: 62-72.
  • Pang, Y., Zeng, G.M., Tang, L., Zhang, Y., Liu, Y.Y., Lei, X.X., Wu, M.S., Li, Z., Liu, C., 2011. Cr(VI) reduction by Pseudomonas aeruginosa immobilized in a polyvinyl alcohol/sodium alginate matrix containing multi-walled carbon nanotubes. Bioresource Technology 102: 10733-10736.
  • Paterlini, P., Romero, C.M., Alvarez, A., 2021. Application of Bio-Nanoparticles in Biotechnological Process Focusing in Bioremediation. In: Rhizobiont in Bioremediation of Hazardous Waste. Kumar, V., Prasad, R., Kumar, M. (Eds.). Springer Singapore, pp. 115-130.
  • Patil, S.S., Shedbalkar, U.U., Truskewycz, A., Chopade, B.A., Ball, A.S., 2016. Nanoparticles for environmental clean-up: A review of potential risks and emerging solutions. Environmental Technology & Innovation 5: 10-21.
  • Patra, J.K., Baek, K.H., 2014. Green nanobiotechnology: Factors affecting synthesis and characterization techniques. Journal of Nanomaterials Article ID 417305.
  • Patra Shahi, M., Kumari, P., Mahobiya, D., Kumar Shahi, S., 2021. Chapter 4 - Nano-bioremediation of environmental contaminants: applications, challenges, and future prospects. In: Bioremediation for Environmental Sustainability. Kumar, V., Saxena, G., Shah, M.P. (Eds.). Elsevier. pp. 83-98.
  • Paul, D., Pandey, G., Pandey, J., Jain, R.K., 2005. Accessing microbial diversity for bioremediation and environmental restoration. Trends in Biotechnology 23: 135-142.
  • Penell, J., Lind, L., Salihovic, S., van Bavel, B., Lind, P.M., 2014. Persistent organic pollutants are related to the change in circulating lipid levels during a 5 year follow-up. Environmental Research 134: 190-197.
  • Pillai, H.P.S., Kottekottil, J., 2016. Nano-phytotechnological remediation of endosulfan using zero valent iron nanoparticles. Journal of Environmental Protection 7(5): 734-744.
  • Raj, R., Dalei, K., Chakraborty, J., Das, S., 2016. Extracellular polymeric substances of a marine bacterium mediated synthesis of CdS nanoparticles for removal of cadmium from aqueous solution. Journal of Colloid and Interface Science 462: 166-175.
  • Rajput, V.D., Minkina, T., Sushkova, S., Tsitsuashvili, V., Mandzhieva, S., Gorovtsov, A., Nevidomskyaya, D., Gromakova, N., 2017a. Effect of nanoparticles on crops and soil microbial communities. Journal of Soils and Sediments 18: 2179-2187.
  • Rajput, V.D., Minkina, T., Suskova, S., Mandzhieva, S., Tsitsuashvili, V., Chapligin, V., Fedorenko, A., 2017b. Effects of copper nanoparticles (CuO NPs) on crop plants: a Mini review. BioNanoScience 8: 36-42.
  • Rajput, V.D., Minkina, T., Fedorenko, A., Tsitsuashvili, V., Mandzhieva, S., Sushkova, S., Azarov, A., 2018. Metal oxide nanoparticles: Applications and effects on soil ecosystems. In: Soil Contamination: Sources, Assessment and Remediation. Lund, J.E. (Ed.). Nova Publishers. pp. 81-106.
  • Rajput, V., Chaplygin, V., Gorovtsov, A., Fedorenko, A., Azarov, A., Chernikova, N., Barakhov, A., Minkina, T., Maksimov, A., Mandzhieva, S., Sushkova, S., 2020a. Assessing the toxicity and accumulation of bulk- and nano-CuO in Hordeum sativum L. Environmental Geochemistry and Health 43: 2443–2454.
  • Rajput, V., Minkina, T., Ahmed, B., Sushkova, S., Singh, R., Soldatov, M., Laratte, B., Fedorenko, A., Mandzhieva, S., Blicharska, E., Musarrat, J., Saquib, Q., Flieger, J., Gorovtsov, A., 2020b. Interaction of Copper-Based Nanoparticles to Soil, Terrestrial, and Aquatic Systems: Critical Review of the State of the Science and Future Perspectives. In: Reviews of Environmental Contamination and Toxicology Volume 252 de Voogt, P. (Ed.). Springer International Publishing, Cham. pp. 51-96.
  • Rajput, V., Minkina, T., Semenkov, I., Klink, G., Tarigholizadeh, S., Sushkova, S., 2020c. Phylogenetic analysis of hyperaccumulator plant species for heavy metals and polycyclic aromatic hydrocarbons. Environmental Geochemistry and Health 43: 1629-1654.
  • Rajput, V., Minkina, T., Sushkova, S., Behal, A., Maksimov, A., Blicharska, E., Ghazaryan, K., Movsesyan, H., Barsova, N., 2020d. ZnO and CuO nanoparticles: a threat to soil organisms, plants, and human health. Environmental Geochemistry and Health 42: 147-158.
  • Rajput, V.D., Minkina, T., Fedorenko, A., Chernikova, N., Hassan, T., Mandzhieva, S., Sushkova, S., Lysenko, V., Soldatov, M.A., Burachevskaya, M., 2021a. Effects of zinc oxide nanoparticles on physiological and anatomical indices in spring barley tissues. Nanomaterials 11(7): 1722.
  • Rajput, V.D., Minkina, T., Kumari, A., Harish, Singh, V.K., Verma, K.K., Mandzhieva, S., Sushkova, S., Srivastava, S., Keswani, C., 2021b. Coping with the challenges of abiotic stress in plants: new dimensions in the field application of nanoparticles. Plants 10(6): 1221.
  • Rajput, V.D., Singh, A., Singh, V.K., Minkina, T.M., Sushkova, S., 2021c. Chapter 4 - Impact of nanoparticles on soil resource. In: Nanomaterials for soil remediation. Amrane, A., Mohan, D., Nguyen, T.A., Assadi, A.A., Yasin, G. (Eds.). Elsevier. pp. 65-85.
  • Ramakrishna, M., Babu, D.R., Gengan, R.M., Chandra, S., Rao, G.N., 2016. Green synthesis of gold nanoparticles using marine algae and evaluation of their catalytic activity. Journal of Nanostructure in Chemistry 6: 1-13.
  • Reddy, K.R., Khodadoust, A.P., Darko-Kagya, K., 2014. Transport and Reactivity of Lactate-Modified Nanoscale Iron Particles for Remediation of DNT in Subsurface Soils. Journal of Environmental Engineering 140: 04014042.
  • Rizwan, M., Singh, M., Mitra, C.K., Morve, R.K., 2014. Ecofriendly application of nanomaterials: nanobioremediation. Journal of Nanoparticles Article ID 431787.
  • Romeh, A.A., Saber, R.A.I., 2020. Green nano-phytoremediation and solubility improving agents for the remediation of chlorfenapyr contaminated soil and water. Journal of Environmental Management 260: 110104.
  • Salvadori, M.R., Ando, R.A., Oller Nascimento, C.A., Corrêa, B., 2015. Extra and intracellular synthesis of nickel oxide nanoparticles mediated by dead fungal biomass. PLOS ONE 10(6): e0129799.
  • San Keskin, N.O., Celebioglu, A., Uyar, T., Tekinay, T., 2015. Microalgae immobilized by nanofibrous web for removal of reactive dyes from wastewater. Industrial & Engineering Chemistry Research 54: 5802-5809.
  • Sangwan, S., Dukare, A., 2018. Microbe-mediated bioremediation: An eco-friendly sustainable approach for environmental clean-up. In: Advances in soil microbiology: Recent trends and future prospects: Volume 1: Soil-Microbe Interaction. Adhya, T.K., Lal, B., Mohapatra, B., Paul, D., Das, S. (Eds.). Springer Singapore. pp. 145-163.
  • Sarwar, N., Imran, M., Shaheen, M.R., Ishaque, W., Kamran, M.A., Matloob, A., Rehim, A., Hussain, S., 2017. Phytoremediation strategies for soils contaminated with heavy metals: Modifications and future perspectives. Chemosphere 171: 710-721.
  • Sathyavathi, S., Manjula, A., Rajendhran, J., Gunasekaran, P., 2014. Extracellular synthesis and characterization of nickel oxide nanoparticles from Microbacterium sp. MRS-1 towards bioremediation of nickel electroplating industrial effluent. Bioresource Technology 165: 270-273.
  • Seshadri, S., Saranya, K., Kowshik, M., 2011. Green synthesis of lead sulfide nanoparticles by the lead resistant marine yeast, Rhodosporidium diobovatum. Biotechnology Progress 27: 1464-1469.
  • Sharma, K., Singh, G., Singh, G., Kumar, M., Bhalla, V., 2015. Silver nanoparticles: facile synthesis and their catalytic application for the degradation of dyes. RSC Advances 5: 25781-25788.
  • Shende, S.S., Rajput, V.D., Gorovtsov, A.V., Harish, Saxena, P., Minkina, T.M., Chokheli, V.A., Jatav, H.S., Sushkova, S.N., Kaur, P., Kizilkaya, R., 2021. Interaction of nanoparticles with microbes. In: Plant-microbes-engineered nano-particles (PM-ENPs) Nexus in agro-ecosystems: Understanding the interaction of plant, microbes and engineered nano-particles (ENPS). Singh, P., Singh, R., Verma, P., Bhadouria, R., Kumar, A., Kaushik, M. (Eds.). Springer International Publishing, Cham. pp. 175-188.
  • Singh, J., Lee, B.K., 2016. Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): a possible mechanism for the removal of Cd from the contaminated soil. Journal of Environmental Management 170: 88-96.
  • Singh, R., Behera, M., Kumar, S., 2020. Nano-bioremediation: An Innovative remediation technology for treatment and management of contaminated sites. In: Bioremediation of industrial waste for environmental safety: Volume II: Biological Agents and Methods for Industrial Waste Management. (Bharagava, R.N., Saxena, G. (Eds.). Springer Singapore. pp. 165-182.
  • Singh, R., Manickam, N., Mudiam, M.K.R., Murthy, R.C., Misra, V., 2013. An integrated (nano-bio) technique for degradation of γ-HCH contaminated soil. Journal of Hazardous Materials 258-259: 35-41.
  • Sinha, S., Chattopadhyay, P., Pan, I., Chatterjee, S., Chanda, P., Bandyopadhyay, D., Das, K., Sen, S.K., 2009. Microbial transformation of xenobiotics for environmental bioremediation. African Journal of Biotechnology 8: 6016-6027.
  • Song, B., Xu, P., Chen, M., Tang, W., Zeng, G., Gong, J., Zhang, P., Ye, S., 2019. Using nanomaterials to facilitate the phytoremediation of contaminated soil. Critical Reviews in Environmental Science and Technology 49: 791-824.
  • Subramaniyam, V., Subashchandrabose, S.R., Thavamani, P., Megharaj, M., Chen, Z., Naidu, R., 2015. Chlorococcum sp. MM11—a novel phyco-nanofactory for the synthesis of iron nanoparticles. Journal of Applied Phycology 27: 1861-1869.
  • Sun, Y.P., Li, X.Q., Cao, J., Zhang, W.X., Wang, H.P., 2006. Characterization of zero-valent iron nanoparticles. Advances in Colloid and Interface Science 120: 47-56.
  • Sushkova, S., Deryabkina, I., Antonenko, E., Kizilkaya, R., Rajput, V., Vasilyeva, G., 2018. Benzo[a]pyrene degradation and bioaccumulation in soil-plant system under artificial contamination. Science of The Total Environment 633: 1386-1391.
  • Sushkova, S., Minkina, T., Deryabkina, I., Mandzhieva, S., Zamulina, I., Bauer, T., Vasilyeva, G., Antonenko, E., Rajput, V., Kızılkaya, R., 2016. Features of accumulation, migration, and transformation of benzo[a]pyrene in soil-plant system in a model condition of soil contamination. Journal of Soils and Sediments 18: 2361-2367.
  • Sushkova, S.N., Minkina, T., Deryabkina, I., Mandzhieva, S., Zamulina, I., Bauer, T., Vasilyeva, G., Antonenko, E., Rajput, V., 2017. Influence of PAH contamination on soil ecological status. Journal of Soils and Sediments 18: 2368-2378.
  • Suvith, V.S., Philip, D., 2014. Catalytic degradation of methylene blue using biosynthesized gold and silver nanoparticles. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 118: 526-532.
  • Tan, W., Peralta-Videa, J.R., Gardea-Torresdey, J.L., 2018. Interaction of titanium dioxide nanoparticles with soil components and plants: current knowledge and future research needs – a critical review. Environmental Science: Nano 5: 257-278.
  • Torimiro, N., Daramola, O.B., Oshibanjo, O.D., Otuyelu, F.O., Akinsanola, B.A., Yusuf, O.O., Ore, O.T., Omole, R.K., 2021. Ecorestoration of heavy metals and toxic chemicals in polluted environment using microbe-mediated nanomaterials. International Journal of Environmental Bioremediation & Biodegradation 9: 8-21.
  • Tratnyek, P.G., Johnson, R.L., 2006. Nanotechnologies for environmental cleanup. Nano Today 1(2): 44-48.
  • Van Hamme Jonathan, D., Singh, A., Ward Owen, P., 2003. Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews 67: 503-549.
  • Vaseashta, A., Vaclavikova, M., Vaseashta, S., Gallios, G., Roy, P., Pummakarnchana, O., 2007. Nanostructures in environmental pollution detection, monitoring, and remediation. Science and Technology of Advanced Materials 8: 47-59.
  • Vázquez-Núñez, E., Molina-Guerrero, C.E., Peña-Castro, J.M., Fernández-Luqueño, F., de la Rosa-Álvarez, M.G., 2020. Use of nanotechnology for the bioremediation of contaminants: A review. Processes 8(7): 826.
  • Vijayan, S.R., Santhiyagu, P., Singamuthu, M., Kumari Ahila, N., Jayaraman, R., Ethiraj, K., 2014. Synthesis and characterization of silver and gold nanoparticles using aqueous extract of seaweed, Turbinaria conoides, and their antimicrofouling activity. The Scientific World Journal Article ID 938272.
  • Vítková, M., Puschenreiter, M., Komárek, M., 2018. Effect of nano zero-valent iron application on As, Cd, Pb, and Zn availability in the rhizosphere of metal(loid) contaminated soils. Chemosphere 200: 217-226.
  • Wang, H., Kim, B., Wunder, S.L., 2015. Nanoparticle-supported lipid bilayers as an in situ remediation strategy for hydrophobic organic contaminants in soils. Environmental Science & Technology 49: 529-536.
  • Wang, L., Zhang, C., Gao, F., Mailhot, G., Pan, G., 2017a. Algae decorated TiO2/Ag hybrid nanofiber membrane with enhanced photocatalytic activity for Cr(VI) removal under visible light. Chemical Engineering Journal 314: 622-630.
  • Wang, P.T., Song, Y.H., Fan, H.C., Yu, L., 2018. Bioreduction of azo dyes was enhanced by in-situ biogenic palladium nanoparticles. Bioresource Technology 266: 176-180.
  • Wang, R., Wang, S., Tai, Y., Tao, R., Dai, Y., Guo, J., Yang, Y., Duan, S., 2017b. Biogenic manganese oxides generated by green algae Desmodesmus sp. WR1 to improve bisphenol A removal. Journal of Hazardous Materials 339: 310-319.
  • Wang, X., Zhang, D., Pan, X., Lee, D.J., Al-Misned, F.A., Mortuza, M.G., Gadd, G.M., 2017c. Aerobic and anaerobic biosynthesis of nano-selenium for remediation of mercury contaminated soil. Chemosphere 170: 266-273.
  • Wani, R.A., Ganai, B.A.M., Shah, A., Uqab, B., 2017. Heavy metal uptake potential of aquatic plants through phytoremediation technique–a review. Journal of Bioremediation & Biodegradation 8(4): 1000404.
  • Weelink, S.A.B., van Eekert, M.H.A., Stams, A.J.M., 2010. Degradation of BTEX by anaerobic bacteria: physiology and application. Reviews in Environmental Science and Bio/Technology 9: 359-385.
  • Wu, R., Wu, H., Jiang, X., Shen, J., Faheem, M., Sun, X., Li, J., Han, W., Wang, L., Liu, X., 2017. The key role of biogenic manganese oxides in enhanced removal of highly recalcitrant 1, 2, 4-triazole from bio-treated chemical industrial wastewater. Environmental Science & Pollution Research 24: 10570–10583.
  • Wuana, R.A., Okieimen, F.E., 2011. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology Article ID 402647.
  • Yan, W., Lien, H.L., Koel, B.E., Zhang, W.X., 2013. Iron nanoparticles for environmental clean-up: recent developments and future outlook. Environmental Science: Processes & Impacts 15: 63-77.
  • Yaqoob, A.A., Parveen, T., Umar, K., Mohamad Ibrahim, M.N., 2020. Role of nanomaterials in the treatment of wastewater: A Review. Water 12(2): 495.
  • Yousefi, N., Emtyazjoo, M., Sepehr, M.N., Darzi, S.J., Sepahy, A.A., 2020. Green synthesis of Pseudomonas aeruginosa immobilized Fe3O4-multiwalled carbon nanotubes bio-adsorbent for the removal of 2,4,6-trinitrophenol from aqueous solution. Environmental Technology & Innovation 20: 101071.
  • Zamani, N., Mehrpour, O., Hassanian-Moghaddam, H., Jalali, M., Amirabadizadeh, A., Samie, S., Sabeti, S., Kolahi, A.A., 2020. A preliminary report on the largest ongoing outbreak of lead toxicity in Iran. Scientific Reports 10: 11797.
  • Zand, A. D., Tabrizi, A.M., 2020. Effect of zero-valent iron nanoparticles on the phytoextraction ability of Kochia scoparia and its response in Pb contaminated soil Environmental Engineering Research 26(4): 200227.
  • Zhang, C., Li, M., Xu, X., Liu, N., 2015. Effects of carbon nanotubes on atrazine biodegradation by Arthrobacter sp. Journal of Hazardous Materials 287: 1-6.
  • Zhao, J., Wu, T., Wu, K., Oikawa, K., Hidaka, H., Serpone, N., 1998. Photoassisted degradation of dye pollutants. 3. Degradation of the cationic dye Rhodamine B in aqueous anionic surfactant/TiO2 dispersions under visible light irradiation:  Evidence for the need of substrate adsorption on TiO2 particles. Environmental Science & Technology 32: 2394-2400.
  • Zhu, N., Zhang, B., Yu, Q., 2020. Genetic engineering-facilitated coassembly of synthetic bacterial cells and magnetic nanoparticles for efficient heavy metal removal. ACS Applied Materials & Interfaces 12: 22948-22957.
  • Zhu, Y., Liu, X., Hu, Y., Wang, R., Chen, M., Wu, J., Wang, Y., Kang, S., Sun, Y., Zhu, M., 2019. Behavior, remediation effect and toxicity of nanomaterials in water environments. Environmental Research 174: 54-60.