Samsun ve Çevresinde Atık Su ve Kanalizasyon Çıkışlarında Yetişen Midyelerde Hepatitis A Virüsü Prevalansı

Hepatitis A Virüsü (HAV) kontamine su, taze ürünler ve su ürünlerinden kaynaklanan akut hepatit ile seyreden bir enfeksiyona neden olmaktadır. Avrupa Birliği (AB) ve diğer sosyal refahı yüksek, temiz suya ulaşımı kolayca sağlayan, gelişmiş ülkelerde seropozitiflik oranı %5-10 seviyesinde bildirilmektedir. Buna karşılık refah seviyesi ve sosyo ekonomik güç düştükçe seropozitiflik oranının %95’e kadar çıktığı bildirilmektedir. Midye ve diğer filtrasyonla beslenen su ürünleri HAV kontaminasyonu yönünden önemli bir kaynak olarak bildirilmektedir. Bu çalışmada, Şubat-Mayıs 2012 tarihleri arasında; Samsun ili merkezi ile Alaçam, Engiz, 19 Mayıs ve Canik ilçelerinde, özellikle bölge arıtma ve lağım sularının denize döküldüğü bölgeler seçilerek toplanan 60 adet midye materyal olarak kullanıldı. Midyelerin her biri steril poşetlere konularak soğuk zincir altında laboratuara gönderildi ve laboratuara geldiği gün içerisinde analiz edildi. Analiz amacıyla öncelikle numunenin hazırlanması takiben proses kontrol virusu (Mengo Virus) ile kontaminasyon, elüsyon, konsantrasyon, RNA ekstraksiyonu, viral RNA nın Real Time PCR ile tespiti ve sonuçların değerlendirilmesi ve yorumlanması gerçekleştirilmiştir. Analiz işlemlerinin her bir aşamasında farklı yazarlar tarafından bildirilen yöntemler kullanılmıştır. Çalışmanın sonuçlarına göre toplam 60 midye örneğinin 5 tanesinde (%8,33) HAV kontaminasyonu saptanmıştır. Örneklerin alındığı bölgelere göre HAV dağılımı şu şekildedir; Merkez ve Alaçam’dan alınan 12 örneğin 2’sinde (%16,66) ve Canik ilçesinden alınan 12 örneğin 1’inde (%8,33) tespit edilmiştir. Endüstriyel ve evsel atıklardan kaynaklanan çevre ve kıyı kirlenmesi doğrudan insan sağlığını tehdit etmektedir. Aynı zamanda midye gibi deniz kabuklularının tüketimine bağlı olarak insanlarda HAV enfeksiyonları gelişebilmektedir.

The Prevalence of Hepatitis A Virus in Mussels Rearing Live in Outfalls of Wastewater and Sewers in Samsun Province

Virus Hepatitis A (HAV) is widespread in contaminated water, fresh products and water products and cause an infection prosecuting with acute hepatitis. It is announced that seropositivity is 5-10% in European Union (EU) and other socially high affluenced, easily reaching clean water, developed countries. However, it is declared that as affluency level and socio-economic power decrease seropositivity increases up to 95%. It is noted that mussel and other water products feed by filtration are important source for HAV contamination. In this study over the period February-March 2012, 60 mussels are used as a material collected from places where district refining and underground sewer flow into the sea in Samsun, Alaçam, Engiz, 19 Mayıs and Canik. Mussels were transferred to laboratory in sterilized bags under cold hain and analysed in the same day. For the purpose of analysis, contamination with process control virus (Virus Mengo), elusion, concentration, RNA extraction, viral RNA detection with Real Time PCR and assesment of results and interpretation are done. Methods noted by different authors are used in the steps of the analysis. According to the results of the study, 5 mussels (8,33%) are found to be contaminated with HAV. HAV distribution according to the regions where samples are collected is as follows; 2 (16,66%) of 12 samples from Centrum and Alaçam and 1 (8,33%) of 12 samples from Canik are identified. Enviromental and coastal contamination caused by industrial and domestic waste impends human health directly. Also, there could be an infection on people depending on the accumulation on water products taking nourishment by filtration such as mussel, after mussel consumption.

___

  • Atmar RL, Neill FH, Romalde JL, Le Guyader F, Woodley CM, Metcalf TG, Estes MK, (1995). Detection of Norwalk virus and hepatitis A virus in shellfish tissues with the PCR. Appl Environ Microbiol. 61, 3014-3018.
  • Carmen FM, Jesús LR, (2013). Detection and Characterization of Hepatitis A Virus and Norovirus in Mussels from Galicia (NW Spain). Food Environ Virology. 5, 110-118.
  • Chironna M, Germinario C, De Medici D, Fiore A, Di Pasquale S, Quarto M, Barbuti S, (2002). Detection of Hepatitis A Virus in Mussels from Different Sources Marketed in Puglia Region ( South Italy). Int J Food Microbiol. 75, 11-18
  • Chung H, Jaykus LA, Sobsey MD, (1996). Detection of human enteric viruses in oysters by in vivo and in vitro ampli®-cation of nucleic acids. Appl Environ Microbiol. 62, 3772-3778.
  • Croci L, De Medici D, Morace G, Fiore A, Scalfaro C, Beneduce F, Toti L, (1999). Detection of hepatitis A virus in shellfish by nested-reverse transcription-PCR. Int J Food Microbiol. 48, 67-71.
  • Croci L, De Medici D, Ciccozzi M, Di Pasquale S, Suffredini E, Toti L, (2003). Contamination of Mussels by Hepatitis A Virus: A Public-Health Problem in Southern Italy. Food Control. 14, 559-563.
  • De Medici D, Croci L, Di Pasquale S, Fiore A, Toti L, (2001). Detecting the precence of infectious hepatitis A virus in molluscs pozitive to RT-nested-PCR. Lett Appl Microbiol. 33, 362-366.
  • Koopmans M, Duizer E, (2004). Foodborne viruses: an emerging problem. Int J Food Microbiol. 90, 23-41.
  • Lee T, Yam WC, Tam TY, Ho BSW, Ng MH, Brown WG, (1999). Occurrence of hepatitis A virus in green-lipped mussels (Perna viridis). Water Res. 33, 885-889.
  • Lees D, (2000). Viruses and bivalve shellfish. Int J Food Microbiol. 59, 81-116.
  • Le Guyader F, Dubois E, Menard D, Pommepuy M, (1994). Detection of hepatitis Avirus, rotavirus, and enterovirus in naturally contaminated shellfish and sediment by reverse transcriptionseminested PCR. Appl Environ Microbiol. 60, 3665-3671.
  • Le Guyader F, Miossec L, Haugarreau L, Dubois E, Kopecka H, Pommepuy M, (1998). RT-PCR evaluation of viral contamination in five shellfish beds over a 21-month period. Water Sci Technol. 38, 45-50.
  • Le Guyader F, Parnaudeau S, Schaeffer J, Bosch A, Loisy F, Pommepuy M, Atmar RL, (2009). Detection and quantification of noroviruses in shellfish. Appl Environ Microbiol. 75, 618-624.
  • Loisy F, Atmar RL, Guillon P, Le Cann P, Pommepuy M, Le Guyader FS, (2005). Real-time RT-PCR for norovirus screening in shellfish. J Virol Methods, 123, 1-7.
  • Mesquita JR, Vaz L, Cerqueira S, Castilho F, Santos R, Monteiro S, (2011). Norovirus, hepatitis A virus and enterovirus presence in shellfish from high quality harvesting areas in Portugal. Food Microbiol. 28, 936-941.
  • Muniain-Mujika I, Calvo M, Lıcena F, Girones R, (2003). Comparative analysis of viral pathogens and potential indicators in shellfish. Int J Food Microbiol. 83, 75-85.
  • Omana VN, Guoliang X, Gilberto V, Harold SM, (2006). Diagnosis of Hepatitis A Virus Infection: a Molecular Approach. Clin Microbiol Rev. 19, 63-79.
  • Pintó RM, Costafreda MI, Bosch A, (2009). Risk assessment in shellfish-borne outbreaks of hepatitis A. Appl Environ Microbiol. 75, 7350-7355.
  • Romalde JL, Area E, Sánchez G, Ribao C, Torrado I, Abad X, (2002). Prevalence of enterovirus and hepatitis A virus in bivalve mollusks from Galicia (NW Spain): Inadequacy of the EU standards of microbiological quality. Int J Food Microbiol 74, 119-130.
  • Shieh YC, Khudyakov YE, Xia G, Ganova-Raeva LM, Woods JW, Veazey JE, Motes ML, Glatzer MB, Bialek SR, Fiore AE, (2007). Molecular confirmation of oysters as the vector for hepatitis A in a 2005 multistate outbreak. J Food Prot. 70,145-150.
  • Terio V, Di Pinto A, Di Pinto B, Martella V, Tantillo G, (2010). RNA Extraction Method fort he PCR detection of hepatitis A Virus in Shellfish. Int J Food Microbiol. 142, 198-201.