STEARİK ASİT TOZUNUN OPTİK KARAKTERİZASYONU ve NANOPARÇACIKLARIN SENTEZİ İÇİN KULLANIMI

Yağ asitleri yaşam için hayati öneme sahip olan trigliserit ve fosfolipitlerin yapısında bulunur. Stearik asit, yağ asitlerinin önemli bir üyesidir. Sabun, deterjan ve lastik gibi çeşitli ürünlerin imalatında kullanılır. Stearik asidin termal ve optik karakterizasyon veri tabanını sağlamak değerlidir. Bu çalışmada, stearik asidin termogravimetrik analizi, X-ışını toz kırınımı, dağılımlı Raman ve Fourier dönüşüm kızılötesi spektroskopileri çalışılarak kapsamlı bir veri tabanı hazırlanmıştır. Stearik asidin termal bozunma sıcaklığı, X-ışını kırınım açıları ve kızılötesi titreşim modları belirlendi. Stearik asit, kadmiyum selenür kuantum noktalarının, bizmut nanoparçacıklarının ve karışık bakır/çinko nanokristallerinin sentezinde kullanılmıştır. Bu nanoyapıları sentezlemek için sıcak enjeksiyon ve tek kap sentez yöntemleri kullanılmıştır. Boyutları, dağılımları, şekilleri, elementsel bileşimleri ve kristal yapıları, geçirimli elektron mikroskopi ve enerji dağılımlı X-ışını analizi ile araştırılmıştır. Karışık bakır/çinko nanokristaller X-ışını kırınım spektroskopisi ile de incelenmiştir.

OPTICAL CHARACTERIZATION of STEARIC ACID POWDER and ITS USE for THE SYNTHESIS of NANOPARTICLES

Fatty acids are found in the structure of triglycerides and phospholipids which have vital importance for the life. Stearic acid is an important member of the fatty acids. It is used in the manufacturing of various products such as soaps, detergents, and rubbers. It is valuable to provide a thermal and optical characterization database of stearic acid. In this study, a comprehensive database has been prepared by studying thermogravimetric analysis, X-ray powder diffraction, dispersive Raman and Fourier transform infrared spectroscopies of stearic acid. Its thermal decomposition temperature, X-ray diffraction angles and infrared vibrational modes have been determined. Stearic acid has been used at the synthesis of cadmium selenide quantum dots, bismuth nanoparticles and mixed copper/zinc nanocrystals. Hot-injection and one-pot synthesis methods have been utilized to synthesize these nanostructures. Their sizes, distributions, shapes, elemental compositions, and crystalline structures have been investigated by transmission electron microscopy and energy dispersive X-ray analysis. Mixed copper/zinc nanocrystals have also been examined by X-ray diffraction spectroscopy.

___

  • [1] Loften JR, Linn JG, Drackley JK, Jenkins TC, Soderholm CG, Kertz AF. Palmitic and stearic acid metabolism in lactating dairy cows. J Dairy Sci 2014; 97: 4661–4674. http://dx.doi.org/ 10.3168/jds.2014-7919
  • [2] Wang Q, Zhang B, Qu M, Zhang J, He D. Fabrication of superhydrophobic surfaces on engineering material surfaces with stearic acid. Appl Surf Sci 2008; 254: 2009–2012. https://doi.org/10.1016/j.apsusc.2007.08.039
  • [3] Wang H, Liang M, Gao J, He Z, Tian S, Li K, Zhao Y, Miao Z. Super-hydrophobic coating prepared by mechanical milling method. J. Coat. Technol. Res. 2021. https://doi.org/10.1007/s11998-021-00546-1
  • [4] Wu X, Yang F, Gan J, Kong Z, Wu Y. A superhydrophobic, antibacterial, and durable surface of poplar wood. Nanomaterials 2021; 11: 1-12. https://doi.org/10.3390/nano11081885
  • [5] Xu CL, Wang YZ. Self-assembly of stearic acid into nano flowers induces the tunable surface wettability of polyimide film. Materials and Design 2018; 138: 30-38. https://doi.org/10.1016/j.matdes.2017.10.057
  • [6] Gretić ZH, Mioč EK, Čadež V, Šegota S, Ćurković HO, Hosseinpour S. The influence of thickness of stearic acid self-assembled film on its protective properties. Journal of The Electrochemical Society 2016; 163: C937-C944. https://doi.org/10.1149/2.1461614jes
  • [7] Sarkar J, Pal P, Talapatra GB. Self-assembly of silver nano-particles on stearic acid Langmuir-Blodgett film: evidence of fractal growth. Chem Phys Lett 2005; 401: 400–404. https://doi.org/10.1016/j.cplett.2004.11.085
  • [8] Nguyen TT, Nguyen VK, Pham TTH, Pham TT, Nguyen TD. Effects of surface modification with stearic acid on the dispersion of some inorganic fillers in PE matrix. J Compos Sci 2021; 5: 1-9. https://doi.org/10.3390/jcs5100270
  • [9] Gilbert M, Petiraksakul P, Mathieson I. Characterisation of stearate/stearic acid coated fillers. Materials Science and Technology 2001; 17: 1472-1478. https://doi.org/10.1179/026708301101509494
  • [10] Hassabo AG, Sharaawy S, Mohamed AL. Saturated fatty acids derivatives as assistants materials for textile processes. Journal of Textile Science & Fashion Technology 2018; 1: 1-8. https://doi.org/10.33552/JTSFT.2018.01.000516
  • [11] Mostoni S, Milana P, Credico BD, D’Arienzo M, Scotti R. Zinc-based curing activators: new trends for reducing zinc content in rubber vulcanization process. Catalysts 2019; 9: 1-22. https://doi.org/10.3390/catal9080664
  • [12] Mensah MB, Awudza JAM, O’Brien P. Castor oil: a suitable green source of capping agent for nanoparticle syntheses and facile surface functionalization. R Soc open sci 2018; 5: 1-19. http://dx.doi.org/10.1098/rsos.180824
  • [13] Junkong P, Morimoto R, Miyaji K, Tohsan A, Sakaki Y, Ikeda Y. Effect of fatty acids on the accelerated sulfur vulcanization of rubber by active zinc/carboxylate complexes. RSC Adv 2020; 10: 4772-4785. https://doi.org/10.1039/C9RA10358A
  • [14] Taipale-Kovalainen K, Karttunen AP, Ketolainen J, Korhonen O. Lubricant based determination of design space for continuously manufactured high dose paracetamol tablets. European Journal of Pharmaceutical Sciences 2018; 115: 1-10. https://doi.org/10.1016/j.ejps.2017.12.021
  • [15] Dong C, Zhang X, Cai H, Cao C, Zhou K, Wang X, Xiao X. Synthesis of stearic acid-stabilized silver nanoparticles in aqueous solution. Advanced Powder Technology 2016; 27: 2416–2423. https://doi.org/10.1016/j.apt.2016.08.018
  • [16] Calvin JJ, Kaufman TM, Sedlak AB, Crook MF, Alivisatos AP. Observation of ordered organic capping ligands on semiconducting quantum dots via powder X-ray diffraction. Nature Communications 2021; 12: 1-8. https://doi.org/10.1038/s41467-021-22947-x
  • [17] Kaminski P, Przybylska D, Klima G, Grzyb T. Improvement in luminescence intensity of β-NaYF4: 18%Yb3+, 2%Er3+@β-NaYF4 nanoparticles as a result of synthesis in the presence of stearic acid. Nanomaterials 2022; 12: 1-16. https://doi.org/10.3390/nano12030319
  • [18] Altıntas Y, Talpur MY, Mutlugun E. The effect of ligand chain length on the optical properties of alloyed core-shell InPZnS/ZnS quantum dots. Journal of Alloys and Compounds 2017; 711: 335-341. https://doi.org/10.1016/j.jallcom.2017.03.326
  • [19] Rahmani M, Ghasemi FA, Payganeh G. Effect of surface modification of calcium carbonate nanoparticles on their dispersion in the polypropylene matrix using stearic acid. Mechanics & Industry 2014; 15: 63–67. https://doi.org/10.1051/meca/2014009
  • [20] Patti A, Lecocq H, Serghei A, Acierno D, Cassagnau P. The universal usefulness of stearic acid as surface modifier: applications to the polymer formulations and composite processing. Journal of Industrial and Engineering Chemistry 2021; 96: 1–33. https://doi.org/10.1016/j.jiec.2021.01.024
  • [21] Wang L, Liu W, Lu Y, Yu X, Song X. Effects of different fatty acid ligands on the synthesis of CdSe nanocrystals. J Mater Sci 2016; 51: 6035-6040. https://doi.org/10.1007/s10853-016-9908-5
  • [22] Kharisov BI, Dias HVR, Kharissova OV, Vázquez A, Peña Y, Gómez I. Solubilization, dispersion and stabilization of magnetic nanoparticles in water and non-aqueous solvents: recent trends. RSC Adv 2014; 4: 45354–45381. https://doi.org/10.1039/C4RA06902A
  • [23] Yin X, Shi M, Wu J, Pan YT, Gray DL, Bertke JA, Yang H. Quantitative analysis of different formation modes of platinum nanocrystals controlled by ligand chemistry. Nano Lett 2017; 17: 6146-6150. https://doi.org/10.1021/acs.nanolett.7b02751
  • [24] Kwon SG, Hyeon T. Formation mechanisms of uniform nanocrystals via hot-injection and heat-up methods. Small 2011; 7: 2685–2702. https://doi.org/10.1002/smll.201002022
  • [25] Allahverdi C. Synthesis and optical characterization of colloidal CdSe quantum dots nucleated for a long time at high temperature. Academic Platform Journal of Engineering and Science 2019; 7: 229-236. https://doi.org/10.21541/apjes.389919
  • [26] Allahverdi C, Erat S. Observation of nucleation and growth mechanism of bismuth nano/microparticles prepared by hot-injection method. Journal of Nano Research 2018; 54: 112-126. https://doi.org/10.4028/www.scientific.net/JNanoR.54.112
  • [27] Balkan T, Küçükkeçeci H, Zarenezhad H, Kaya S, Metin Ö. One-pot synthesis of monodisperse copper-silver alloy nanoparticles and their composition-dependent electrocatalytic activity for oxygen reduction reaction. Journal of Alloys and Compounds 2020; 831: 1-9. https://doi.org/10.1016/j.jallcom.2020.154787
  • [28] Martini WS, Porto BLS, de Oliveira MAL, Sant’Ana AC. Comparative study of the lipid profiles of oils from kernels of peanut, babassu, coconut, castor and grape by GC-FID and Raman spectroscopy. J Braz Chem Soc 2018; 29: 390-397. http://dx.doi.org/10.21577/0103-5053.20170152
  • [29] Silva LFL, Paschoal Jr W, Pinheiro GS, Filho JGS, Freire PTC, de Sousa FF, Moreira SGC. Understanding the effect of solvent polarity on the polymorphism of octadecanoic acid through spectroscopic techniques and DFT calculations. CrystEngComm 2019; 21: 297–309. https://doi.org/10.1039/C8CE01402G
  • [30] Oleszko A, Olsztyńska-Janus S, Walski T, Grzeszczuk-Kuć K, Bujok J, Gałecka K, Czerski A, Witkiewicz W, Komorowska M. Application of FTIR-ATR spectroscopy to determine the extent of lipid peroxidation in plasma during haemodialysis. BioMed Research International 2015; 2015: 1-8. https://doi.org/10.1155/2015/245607
  • [31] Vongsvivut J, Heraud P, Zhang W, Kralovec JA, McNaughton D, Barrow CJ. Quantitative determination of fatty acid compositions in micro-encapsulated fish-oil supplements using Fourier transform infrared (FTIR) spectroscopy. Food Chemistry 2012; 135: 603–609. https://doi.org/10.1016/j.foodchem.2012.05.012
  • [32] Guzelturk B, Martinez PLH, Zhang Q, Xiong Q, Sun H, Sun XW, Govorov AO, Demir HV. Excitonics of semiconductor quantum dots and wires for lighting and displays. Laser Photonics Rev 2014; 8: 73–93. https://doi.org/10.1002/lpor.201300024
  • [33] Chen W, Wang K, Hao J, Wu D, Qin J, Dong D, Deng J, Li Y, Chen Y, Cao W. High efficiency and color rendering quantum dots white light emitting diodes optimized by luminescent microspheres incorporating. Nanophotonics 2016; 5: 565–572. https://doi.org/10.1515/nanoph-2016-0037
  • [34] Liu H, Tang W, Li C, Lv P, Wang Z, Liu Y, Zhang C, Bao Y, Chen H, Meng X, Song Y, Xia X, Pan F, Cui D, Shi Y. CdSe/ZnS quantum dots-labeled mesenchymal stem cells for targeted fluorescence imaging of pancreas tissues and therapy of type 1 diabetic rats. Nanoscale Research Letters 2015; 10: 1-12. https://doi.org/10.1186/s11671-015-0959-3
  • [35] Theivasanthi T, Alagar M. Nano sized copper particles by electrolytic synthesis and characterizations. International Journal of the Physical Sciences 2011; 6: 3662-3671.
  • [36] Velazquez-Gonzalez CE, Armendariz-Mireles EN, Pech-Rodriguez WJ, González-Quijano D, Rocha-Rangel E. Improvement of dye sensitized solar cell photovoltaic performance by using a ZnO-semiconductor processed by reaction bonded. Microsystem Technologies 2019; 25: 4567–4575. https://doi.org/10.1007/s00542-019-04476-2
  • [37] Manyasree D, Peddi KM, Ravikumar R. CuO Nanoparticles: Synthesis, characterization and their bactericidal efficacy. Int J App Pharm 2017; 9: 71-74. https://doi.org/10.22159/ijap.2017v9i6.71757
  • [38] Voncken JHL, Verkroost TW. Powder diffraction of cubic α-brass. Powder Diffr 1997; 12: 228-229. https://doi.org/10.1017/S0885715600009787
  • [39] Dou Q, Ng KM. Synthesis of various metal stearates and the corresponding monodisperse metal oxide nanoparticles. Powder Technology 2016; 301: 949–958. https://doi.org/10.1016/j.powtec.2016.07.037
  • [40] Banski M, Afzaal M, Malik MA, Podhorodecki A, Misiewicz J, O’Brien P. Special role for zinc stearate and octadecene in the synthesis of luminescent ZnSe nanocrystals. Chem Mater 2015; 27: 3797–3800. https://doi.org/10.1021/acs.chemmater.5b00347
  • [41] Bailey RE, Smith AM, Nie S. Quantum dots in biology and medicine. Physica E 2004; 25: 1–12. https://doi.org/10.1016/j.physe.2004.07.013