N-BENZİLMALEİMALEİMİDEDİN (NBM) MONOMERİK VE DİMERİK FORMLARINDA TİTREŞİMSEL SPEKTROSKOPİK PARAMETRELERLE BİRLEŞTİRİLMİŞ DFT HESAPLAMALARI

Kimyasal ve biyolojik öneme sahip N-benzilmaleimidin (NBM) yapısal, titreşimsel ve teorik analizleri yapılmıştır. Moleküller arası C=O··H hidrojen bağı ile birbirine bağlanan dört olası konformer ve bunların altmışaltı dimerik formları kararlılık açısından incelenmiştir. NBM'nin gaz fazındaki konformer ve dimer yapılarının Boltzmann dağılımları yoluyla populasyon analizleri yapılıp en kararlı yapı belirlenmiştir. NBM'nin deneysel IR ve Raman spektrumları katı fazda kaydedilmiş ve bu deneysel bantlar molekülünün monomer ve dimer formlarının teorik dalga sayıları ile karşılaştırılıp bantlar yorumlanmıştır. Kullanılan hesaplama yönetemlerinin NBM için bulunan yeni ölçeklendirme faktörleri (B3LYP/6-31G(d) için 0,9617 ve M06-2X/6-31G(d) için 0,9531)) tüm maleimid türevlerinin titreşim frekanslarının hesaplamalarında daha doğru sonuçlar verebileceği görülmüştür. Moleküler Elektrostatik Potansiyel (MEP) haritası, negatif ve pozitif bölgelerin monomerik ve dimerik formlarda değiştiğini, HOMO-LUMO şekillerinin ise monomerik ve dimerik formlarda genelde değişmediğini göstermiştir. Nükleofilik ve elektrofilik Fukui fonksiyonları ve ikili tanımlayıcılar, maleimid grubunun nükleofilik, benzil grubunun ise elektrofilik bölge olduğunu ve ikili tanımlayıcı değerlerin dimerizasyonla azaldığını göstermiştir.

DFT CALCULATIONS IN MONOMERIC AND DIMERIC FORMS OF N-BENZYLMALEIMIDE (NBM) COMBINED WITH VIBRATIONAL SPECTROSCOPIC PARAMETERS

The structural, vibrational and theoretical analyses of N-benzylmaleimide (NBM) having chemical and biological significances have been made. The four possible conformers and their sixty-six dimeric forms linked by the intermolecular C=O···H hydrogen bonding were investigated for the stability. The conformational and the dimeric structures of NBM in the gas phase were investigated and the population distributions of the conformations and dimers were obtained using the Boltzmann distribution. The experimental IR and Raman spectra of solid phase NBM were recorded, and the bands were compared with the theoretical wavenumber the values of the monomer and the dimer forms for their assignments. The new scale factors (0.9617 for B3LYP/6-31G(d) and 0.9531 for M06-2X/6-31G(d)) obtained for NBM can be used more accurately in vibration calculations of all maleimide derivatives. The Molecular Electrostatic Potential (MEP) map showed that the negative and the positive regions have changed from monomeric to dimeric form changes, while the HOMO-LUMO shapes did not generally change in monomeric and dimeric forms. The nucleophilic and electrophilic Fukui functions and dual descriptors shows that maleimide and benzyl groups are nucleophilic and electrophilic regions, respectively, additionally the dual descriptor values decrease upon dimerization.

___

  • [1] Jafari E, Jarah-Najafabadi NT, Jahanian-Najafabadi A, Poorirani S, Hassanzadeh F, Sadeghian-Rizi S. Synthesis and evaluation of antimicrobial activity of cyclic imides derived from phthalic and succinic anhydrides. Res Pharm Sci, 2017; 12: 526-534.
  • [2] Ravasco JMJM, Faustino H, Trindade A, Gois PMP. Bioconjugation with Maleimides: A Useful Tool for Chemical Biology. Chemisrty A European Journal, 2019; 25: 43-59.
  • [3] Hamad AS, Abed FS. Synthesis of some new maleimide derivatives. Journal of Applicable Chemistry, 2014; 3: 56-63.
  • [4] Noldin VF, Locatelli C, Cordova CAS, Noldin AT, Vanzin F, Dajal fae J, Buzzi FC, Pilati C, Cechinel-Filho V, Creczynski-Pasa TB. Cytotoxicity of N-phenylmaleimide Derivatives and Inhibition of Melanoma Growth in a Preclinical Mouse Melanoma Model. Journal of Pharmacy and Pharmaceutical Sciences, 2015; 4: 32-42.
  • [5] Onimura K, Matsushima M, Yamabuki K, Oishi T. Synthesis and properties of N-substituted maleimides conjugated with 1,4-phenylene or 2,5-thienylene polymers. Polymer Journal, 2010; 42: 290-297.
  • [6] Al-Azzawi AM, Mahdi SA. Synthesis and evaluation of antimicrobial activity of several new maleimides to benzothiazole moiety. J Baghdad Sci, 2013; 10: 658-672.
  • [7] Dhivare RS, Rajput SS. Synthesis and antimicrobial activity of five membered cyclic imide derivatives of mono, di and tri substituted aromatic amines and napthyl amine. World J Pharm Res, 2015; 4: 1650-1658.
  • [8] Chin TS, Nasir FI, Hassan NI. Synthesis and antimicrobial activities of eleven N-substituted maleimide. Malaysian Journal of Analytical Sciences, 2016; 20: 741-750.
  • [9] Khalil AE, Berghot MA, Gouda MA. Synthesis and study of some new N-substituted imide derivatives as potential antibacterial agents. Chem Paper, 2010; 64: 637-644.
  • [10] Salhi L, Bouzroura-Aichouche S, Benmalek Y, Bentarzi Y, Poulain-Martini S, Cacciuttolo B, Dunach E, Nedjar-Kolli B. An efficient conversion of maleimide derivatives to 2-thioxo imidazolidinones. Organic Communications, 2013; 6: 87-94.
  • [11] Sortino M, Filho VC, Corre R, Zacchino S. N-Phenyl and N-phenylalkyl-maleimides acting against Candida spp.: Time-to-kill, stability, interaction with maleamic acids. Bioorg Med Chem, 2008; 16: 560-568.
  • [12] Stiz D, Corrêa R, D’Auria FD, Simonetti G, Cechinel-Filho V. Synthesis of cyclic imides (Methylphtalimides, carboxylic acid phtalimides and itaconimides) and evaluation of their antifungal potential. Med Chem, 2016; 12:647-654.
  • [13] Patil MM, Rajput SS. Succinimides: Synthesis, reaction, and biological activity. Int J Pharm Sci, 2014; 6:8-14.
  • [14] Xu G, Kong D, Li W, Xu W, Jiang Y. Synthesis of maleimide derivatives via CuAAC click chemistry and biological evaluation of their antitumor activity against cancer cell lines. Journal of Chemical and Pharmaceutical Research, 2014; 6: 947-951.
  • [15] Lee YJ, Huang CC, Lin WL, Hung CH. Camphorataimide B, a maleimide in mycelium of Antrodia camphorate, inhibits progression of human MDA-MB-231 breast cancer cells. Cancer Research Frontiers, 2016; 2: 43-54.
  • [16] Sahooa SK, Nagasree KP, Namratha JR, Varma PR, Kumar MMK. Synthesis and screening of new maleimide derivatives as potential anti-tubercular agents. Journal of Applied Pharmaceutical Science, 2015; 5: 44-47.
  • [17] de Campos F, Corrêa R, de Souza MM, Yunes RA, Nunes RJ, Cechinel-Filho V. Studies on new cyclic imides obtained from aminophenazone with analgesic properties. Potent effects of a 3,4-dichloromi derivative. Arzneimittelforschung, 2002; 52: 455-461.
  • [18] Huang P, Yeh YM, Pao CC, Chen CY, Wang TZC. N-(1-Pyrenyl) maleimide inhibits telomerase activity in a cell free system and induces apoptosis in Jurkat cells. Molecular Biology Reports, 2012; 39: 8899-8905.
  • [19] Gunosewoyo H, Midzak A, Gaisina IN, Sabath EV, Fedolak A, Hanania T, Brunner D, Papadopoulos V, Kozikowski AP. Characterization of Maleimide-Based Glycogen Synthase Kinase-3 (GSK-3) Inhibitors as Stimulators of Steroidogenesis. Journal of Medicinal Chemistry, 2013; 56: 5115-5129.
  • [20] Eloh K, Demurtas M, Mura MG, Deplano A, Onnis V, Sasanelli N, Maxia A, Caboni P. Potent Nematicidal Activity of Mi Derivatives on Meloidogyne incognita. Journal of Agricultural and Food Chemistry, 2016; 64:4876-4881.
  • [21] Imran M, Bisht AS, Asif MA. Review on Biological and Chemical Potential of Phthalimide and Maleimide Derivatives. Acta Scientific Pharmaceutical Sciences, 2019; 3: 51-67.
  • [22] Frisch MJ, Trucks GW, Schlegel HB et al. Gaussian 09, Revision B.01, Gaussian, Inc., Wallingford CT, 2010.
  • [23] Becke AD. A new mixing of Hartree-Fock and local density-functional theorie. J Chem Phys, 1993; 98: 1372-1377.
  • [24] Lee C, Yang W, Parr RG. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988; 37: 785-789.
  • [25] Zhao Y, Truhlar DG. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theoretical Chemical Accounts, 2008; 120: 215-241.
  • [26] Dennington RI., Keith T, Millam J. GaussView, Version 5.0.8, Semichem. Inc., Shawnee Mission, KS, 2008.
  • [27] Jamroz MH.Vibrational Energy Distribution Analysis, VEDA4 program, Warsaw, 2004.
  • [28] Boys SF, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys, 1970; 19: 553-566.
  • [29] Nejad A, Suhm MA. Concerted Pair Motion Due to Double Hydrogen Bonding: The Formic Acid Dimer Case. J. Indian Inst Sci, 2019; 100: 15-19.
  • [30] Arı H, Pandır D, Böyükata M. Structural, energetics and vibrational analyses of monomeric and dimeric forms of 2-deoxy-2-(3-methyl-3-nitrosourea)-1-D-glucopyranose. Journal of Molecular Structure, 2021; 1229: 129588.
  • [31] Merrick JP, Moran D, Radom L. An Evaluation of Harmonic Vibrational Frequency Scale Factors. J Phys Chem A, 2007; 111: 11683-11700.
  • [32] Andersson MP, Uvdal P. New Scale Factors for Harmonic Vibrational Frequencies Using the B3LYP Density Functional Method with the Triple-ú Basis Set 6-311+G(d,p). J. Phys. Chem. A, 2005; 109: 2937-2941.
  • [33] Arı H, Özpozan T, Büyükmumcu Z, Akın N, İlhan İÖ. Synthesis, Spectral and Theoretical (DFT) Investigations of 4,6-diphenyl-6-hydroxy-1-{[(1Z)-1-phenyl ethylidene] amino} tetrahydro pyrimidine-2(1H)-one. Journal of Molecular Structure, 2022; 1250: 131820.
  • [34] Ünal Y, Nassif W, Özaydin BC, Sayin K. Scale factor database for the vibration frequencies calculated in M06-2X, one of the DFT methods. Vibrational Spectroscopy, 2021; 112: 103189.
  • [35] Kesharwani MK, Brauer B, Martin Jan ML. Frequency and Zero-Point Vibrational Energy Scale Factors for Double-Hybrid Density Functionals (and Other Selected Methods): Can Anharmonic Force Fields Be Avoided?. J Phys Chem A, 2015; 119: 1701-1714.
  • [36] Woldbaek T, Klaboe P, Nielsen CJ. The vibrational spectra of maleimide and N-D maleimide. J Mol Struct, 1975; 27: 283-301.
  • [37] Coates J. Interpretation of infrared spectra, a practical approach, in: R.A. Meyers (Ed.), Encyclopedia of Analytical Chemistry, John Wiley & Sons Ltd, Chichester, 2000.
  • [38] Katritzky AR. Infrared absorption of heteroaromatic and benzenoid sixmembered, monocyclic nuclei. Part V. The correlation of intensities of CC and CN ring stretching frequencies with charge disturbance in the ring. J Chem Soc, 1958.
  • [39] Arı H, Büyükmumcu Z, Özpozan T, İlhan Öİ, Bahadır Ö. Vibrational and Theoretical Analysis of Pentyl-4-benzoyl-1-[2.4-dinitrophenyl]-5-phenyl-1H-pyrazole-3-carboxylate. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2013; 110: 193-204.
  • [40] Silverstein RM, Bassler GC, Morrill TC. Spectrometric Identification of Organic Compounds. 4th Edition, John Wiley and Sons, New York, 1981.
  • [41] Uesugi Y, Mizuno M, Shimojima A, Takahashi H. Transient Resonance Raman and ab Initio MO Calculation Studies of the Structures and Vibrational Assignments of the T1 State and the Anion Radical of Coumarin and Its Isotopically Substituted Analogues. J Phys Chem, 1997;101: 268-274.
  • [42] Ramesh P, Caroline ML, Muthu S, Narayana B, Raja M, Geoffrey AB. Spectroscopic, chemical reactivity, molecular docking investigation and QSAR analyses of (2E)-1-(3-bromo-2-thienyl)-3-(2, 5-dimethoxyphenyl) prop-2-en-1-one, Spectrochim. Acta A Mol. Biomol. Spectrosc, 2019; 222: 117190.
  • [43] Parr RG, Pearson RG. Absolute hardness: companion parameter to absolute electronegativity, J Am Chem Soc, 1983; 105: 7512-7516.
  • [44] Domingo LR, Aurell MJ, Pérez P, Contreras R. Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels-Alder reactions. Tetrahedron, 2002; 58: 4417-4423.
  • [45] Parthasarathi R, Subramanian V, Roy DR, Chattaraj PK. Electrophilicity index as a possible descriptor of biological activity, Bioorg Med Chem, 2014; 12: 5533-5543.
  • [46] Yang W, Mortier WJ. The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines. J Am Chem Soc, 1986; 108: 5708-5711.
  • [47] Ayers PW, Parr RG. Variational Principles for Describing Chemical Reactions: The Fukui Function and Chemical Hardness Revisited. J Am Chem Soc, 2000; 122: 2010-2018.
  • [48] Ayers PW, Parr RG.Variational Principles for Describing Chemical Reac-tions. Reactivity Indices Based on the External Potential, Am Chem Soc, 2001; 123: 2007-2017.
  • [49] Morell C, Grand A, Toro-Labbé A. New dual descriptor for chemical reactivity. J Phys Chem A, 2005; 109: 205-212.
  • [50] Martínez-Araya J, Salgado-Morán G, Glossman-Mitnik D. Computational nanochemistry report on the oxicams conceptual DFT indices and chemical re-activity. J Phys Chem B, 2013; 117: 6339-6351.
  • [51] Cárdenas C, Rabi N, Ayers P, Morell C, Jaramillo P, Fuentealba P. Chemical reactivity descriptors for ambiphilic reagents: dual descriptor, local hyper-softness, and electrostatic potential. J Phys Chem A, 2009; 113: 8660-8667.
  • [52] Barluenga J, Tomas M, Bieger K. Reaction of Dihydrodiaza- phosphinines with Acetylenic Diesters: a Direct Synthesis of the λ5-Diazaphosphaazulene Skeleton, Eur J Org Chem, 1998; 7: 1425-1429.
  • [53] Correa JV, Herrera B, Toro-Labbe A. Characterization of the reactive conformations of protonated histamine through the reaction force analysis and the dual descriptor of chemical reactivity, Journal of Molecular Structure: Theochem, 2007; 817: 111-118.