On SIP and SSP Modules

M has the summmand intersection property (SIP), if the intersection of every two direct summands in M is a direct summand in M, and a module has the summand sum property (SSP), if the sum of every two direct summand in M is a direct summand in M. In this note, we show that modules have these properties under some conditions.
Anahtar Kelimeler:

Direct summand, SIP-modules

___

  • [1] Anderson FW, Fuller KR. Rings and Categories of modules. New York, USA: Springer-Verlag, 1974
  • [2] Fuchs L. Infinite Abelian Groups. Academic Press, New York, USA:1970.
  • [3] Kaplansky I. Infinite Abelian Groups. Michigan, USA: university of Michigan, 1969.
  • [4] Wilson GV. Modules with on the direct summand intersection proerty. Comm. Algebra 1986; 14: 21-38.
  • [5] Garcia JL. Properties of direct summands of modules. Comm. Algebra 1989; 17(1): 73-92.
  • [6] Alkan M, Harmancı A. On summand sum and summand intersection property of modules. Turk J. Math 2002; 26:131-147.
  • [7] Dung NV, Huyn DV, Smith PF, Wisbauer R. Extending Modules, London, UK: Longman, 1990.
  • [8] Clark J, Lomp C, Vanaja N, Wisbauer R. Lifting Modules. Berlin, Germany: Birkhause Verlag, 2006.
  • [9] Azarpanah F. Sum and intersection of summand ideals in C(X). Comm Algebra1999; 27:5548-5560.
  • [10] Smith PF. Fully invariant multiplication modules. Palest. J. Math 2015; 4(1): 462-470.
  • [11] Akalan E, Birkenmeier GF, Tercan A. Goldie extending modules. Comm. Algebra 2009; 37:663-683.
  • [12] Takıl Mutlu F. On ADS-modules with the SIP. Bull. Iranian Soc. 2015; 41:1355-1363.
  • [13]Quyn TC, Koşan MT. On ADS modules and rings. Comm Algebra. 2014; 42:3541-3551.
  • [14] Karabacak F, Tercan A. On modules and matrix rings with SIP-extending. Taiwanese J. Math. 2007; 11(4): 1037-1044.